Advertisement

Influence of Pressure on Optical Transparency and High Electrical Conductivity in CoVSn Alloys: DFT Study

  • A. A. MubarakEmail author
  • Farida Hamioud
  • Saad Tariq
Article
  • 2 Downloads

Abstract

First-principles calculations of the mechanical, thermal, electronic, optical and transport behavior of CoVSn half-Heusler alloys under external pressure are investigated using density functional theory. The elastic constants and thermoelectric properties are computed using ElaStic and BoltzTrap codes, respectively. The lattice constant and bond lengths are found to decrease with increased pressure. The calculated elastic properties reveal that the CoVSn alloy is mechanically stable and anisotropic under ambient pressure. At 20 GPa, the alloy is shown to be ductile, while at all other pressures it exhibits a brittle nature. In addition, it shows decreased phonon–phonon coupling with an increase in pressure. Using the modified Becke–Johnson (mBJ) potential, it was found that the indirect (LX) band gap values range from 0.89 eV to 1.00 eV, which agrees with previous studies. The increase in the external pressure directly increases the trend in the band gap while it decreases the static reflective index values. All our calculated optical parameters for the CoVSn alloy are shifted to a high energy level due to the external pressure. Our thermoelectric results suggest that holes are the major charge carriers in the CoVSn alloy. In light of our results, we expect promising optical and thermoelectric applications for CoVSn under pressure.

Keywords

Half-Heusler elastic constants band gab optical refractive transport parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    F. Hamioud and A.A. Mubarak, Int. J. Mod. Phys. B 31, 1750170 (2017).CrossRefGoogle Scholar
  2. 2.
    J. Toboła and J. Pierre, J. Alloy. Compd. 296, 243 (2000).CrossRefGoogle Scholar
  3. 3.
    A. Audzijonis, R. Sereika, R. Žaltauskas, and A. Rėza, J. Phys. Chem. Solids 72, 1501 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Date, A. Date, C. Dixon, and A. Akbarzadeh, Renew. Sustain. Energy Rev. 33, 371 (2014).CrossRefGoogle Scholar
  5. 5.
    R. Chaves, H. Amaral, A. Levelut, S. Ziolkiewicz, M. Balkanski, M.K. Teng, J.F. Vittori, and H. Stone, Physica Stat. Solidi (a) 73, 367 (1982).CrossRefGoogle Scholar
  6. 6.
    J. Grigas, E. Talik, M. Adamiec, V. Lazauskas, and V. Nelkinas, J. Electron Spectrosc. Relat. Phenom. 153, 22 (2006).CrossRefGoogle Scholar
  7. 7.
    M.K. Teng, M. Massot, M. Balkanski, and S. Ziolkiewicz, Phys. Rev. B 17, 3695 (1978).CrossRefGoogle Scholar
  8. 8.
    C. Felser, G.H. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).CrossRefGoogle Scholar
  9. 9.
    Y. Kawaharada, H. Uneda, H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloy. Compd. 364, 59 (2004).CrossRefGoogle Scholar
  10. 10.
    J.E. Douglas, C.S. Birkel, M.-S. Miao, C.J. Torbet, G.D. Stucky, T.M. Pollock, and R. Seshadri, Appl. Phys. Lett. 101, 183902 (2012).CrossRefGoogle Scholar
  11. 11.
    J.K. Kawasaki, L.I.M. Johansson, B.D. Schultz, and C.J. Palmstrøm, Appl. Phys. Lett. 104, 022109 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Ahmad, N.G. Murtaza, R. Khenata, S.B. Omran, and A. Bouhemadou, J. Magn. Magn. Mater. 377, 204 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Hichour, D. Rached, R. Khenata, M. Rabah, M. Merabet, A.H. Reshak, S.B. Omran, and R. Ahmed, J. Phys. Chem. Solids 73, 975 (2012).CrossRefGoogle Scholar
  14. 14.
    B.R.K. Nanda and I. Dasgupta, J. Phys. Condens. Matter 15, 7307 (2003).CrossRefGoogle Scholar
  15. 15.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  16. 16.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnika, and J. Luitz, WIEN2k (Vienna: Technical Universität Wien, 2001).Google Scholar
  17. 17.
    D.D. Koelling and B.N. Harmon, J. Phys. C Solid State Phys. 10, 3107 (1977).CrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  19. 19.
    X. Jing Zhang, Y. Xu, Y. Wang, and Y. Li, J. Phys. Soc. Jpn 82, 104706 (2013).CrossRefGoogle Scholar
  20. 20.
    R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl, Comput. Phys. Commun. 184, 1861 (2013).CrossRefGoogle Scholar
  21. 21.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  22. 22.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).CrossRefGoogle Scholar
  23. 23.
    C.B.H. Evers, C.G. Richter, K. Hartjes, and W. Jeitschko, J. Alloy. Compd. 252, 93 (1997).CrossRefGoogle Scholar
  24. 24.
    B.B. Karki, S.J. Clark, M.C. Warren, H.C. Hsueh, G.J. Ackland, and J. Crain, J. Phys. Condens. Matter 9, 375 (1997).CrossRefGoogle Scholar
  25. 25.
    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. Lett. 71, 4182 (1993).CrossRefGoogle Scholar
  26. 26.
    S.A.A. Tariq, S. Saad, and S. Tariq, AIP Adv. 5, 077111 (2015).CrossRefGoogle Scholar
  27. 27.
    P. Souvatzis, M.I. Katsnelson, S. Simak, R. Ahuja, O. Eriksson, and P. Mohn, Phys. Rev. B 70, 012201 (2004).CrossRefGoogle Scholar
  28. 28.
    Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Metal Hard Mater. 33, 93 (2012).CrossRefGoogle Scholar
  29. 29.
    R.A. Johnson, Phys. Rev. B 37, 3924 (1988).CrossRefGoogle Scholar
  30. 30.
    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
  31. 31.
    J. Hao, X.-R. Chen, H.-L. Cui, and Y.-L. Bai, Physica B 382, 118 (2006).CrossRefGoogle Scholar
  32. 32.
    M.E. Fine, L.D. Brown, and H.L. Marcus, Scr. Metall. 18, 951 (1984).CrossRefGoogle Scholar
  33. 33.
    M.A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
  34. 34.
    D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).CrossRefGoogle Scholar
  35. 35.
    J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, C. Wolverton, A.W. Ghosh, and W.H. Butler, Phys. Rev. B 95, 024411 (2017).CrossRefGoogle Scholar
  36. 36.
    S. Öğüt and K.M. Rabe, Phys. Rev. B 51, 10443 (1995).CrossRefGoogle Scholar
  37. 37.
    D.R. Penn, Phys. Rev. 128, 2093 (1962).CrossRefGoogle Scholar
  38. 38.
    H. Shi, W. Ming, D.S. Parker, M.-H. Du, and D.J. Singh, Phys. Rev. B 95, 195207 (2017).CrossRefGoogle Scholar
  39. 39.
    C. Lee, J. Hong, W.R. Lee, D.Y. Kim, and J.H. Shim, J. Solid State Chem. 211, 113 (2014).CrossRefGoogle Scholar
  40. 40.
    R. Ahmed, N.S. Masuri, B. Ul Haq, A. Shaari, S. AlFaifi, F.K. Butt, M.N. Muhamad, M. Ahmed, and S.A. Tahir, Mater. Des. 136, 196 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Physics Department, Rabigh College of Science and ArtsKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Science FacultyNottingham CollegeNottinghamUK
  3. 3.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations