Journal of Electronic Materials

, Volume 48, Issue 5, pp 3383–3387 | Cite as

Solution-Processed Insulators for Flexible Metal-Insulator-Metal Structures

  • Akshita Mishra
  • Soumen Saha
  • Chandan Kumar Jha
  • Vasudha Agrawal
  • Bhaskar Mitra
  • Abhisek Dixit
  • Madhusudan SinghEmail author
Topical Collection: 60th Electronic Materials Conference 2018
Part of the following topical collections:
  1. 60th Electronic Materials Conference 2018


Repeatable switching hysterisis in metal-insulator-metal devices is commonly attributed to the motion of oxygen vacancies under a sufficiently large external electric field. The resulting memristive behaviour has become a compelling alternative to traditional non-volatile memory device architectures. A room-temperature process for the fabrication of a metal-insulator-metal structure employing niobium pentaoxide (\(\hbox {Nb}_{2}\hbox {O}_{5}\)) as the active layer has been developed, without any annealing of the oxide film. Electrical characterization of the devices shows sharp switching of resistivity. The developed process is very simple, cost-effective and can be implemented on flexible substrates.


MIM structures sol–gel spin coating non-volatile memory flexible electronics 



AM and VA acknowledge support from the Visweswaraya Ph.D. Fellowship, and BM, AD, and MS acknowledge support from Young Faculty Research Fellowship, both from Digital India Corporation. CKJ acknowledges Ph.D. Fellowship support from Ministry of Human Resource & Development. SS, BM and MS acknowledge support from Ministry of Electronics and Information Technology (9(2)/2012-MDD). MS acknowledges support from a grant from the Science and Engineering Research Board (SB/S3/EECE/095/2014). BM and MS acknowledge support under SR/FST/ETII-061/2014 from the Department of Science & Technology. The authors would also like to acknowledge access to facilities in the Nanoscale Research Facility (NRF) and Central Research Facility (CRF) at IIT Delhi, and useful discussions with Mr. Rajinder Singh Deol and Dr. Henam Sylvia Devi.

Conflcit of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    M.T. Penella and M. Gasulla, in 2007 IEEE Instrumentation Measurement Technology Conference IMTC 2007 (2007), pp. 1–5Google Scholar
  2. 2.
    P.C.P. Chao, IEEE Sens. J. 11(12), 3106 (2011)CrossRefGoogle Scholar
  3. 3.
    H.W. Choi, T. Zhou, M. Singh, and G.E. Jabbour, Nanoscale 7(8), 3338 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour, Adv. Mater. 22(6), 673 (2010)CrossRefGoogle Scholar
  5. 5.
    R. Deol, H.W. Choi, M. Singh, and G. Jabbour, IEEE Sens. J. 15(6), 3186 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Chua, IEEE Trans. Circuit Theory 18(5), 507 (1971)CrossRefGoogle Scholar
  7. 7.
    Hadiyawarman, F. Budiman, D.G.O. Hernowo, R.R. Pandey, and H. Tanaka, Jpn. J. Appl. Phys. 57(3S2), 03EA06 (2018)Google Scholar
  8. 8.
    V.K. Nagareddy, M.D. Barnes, F. Zipoli, K.T. Lai, A.M. Alexeev, M.F. Craciun, and C.D. Wright, ACS Nano 11(3), 3010 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Schmitt, J. Spring, R. Korobko, and J.L. Rupp, ACS Nano 11(9), 8881 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Lauters, B. McCarthy, D. Sarid, and G.E. Jabbour, Appl. Phys. Lett. 87(23), 231105 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Yan, and D. Xue, Adv. Mater. 20(5), 1055 (2008)CrossRefGoogle Scholar
  12. 12.
    J.J. Yang, N.P. Kobayashi, J.P. Strachan, M.X. Zhang, D.A.A. Ohlberg, M.D. Pickett, Z. Li, G. Medeiros-Ribeiro, and R.S. Williams, Chem. Mater. 23(2), 123 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov, and T. Prodromakis, Sci. Rep. 7(1), 17532 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Sim, D. Choi, D. Lee, S. Seo, M.J. Lee, I.K. Yoo, and H. Hwang, IEEE Electron Device Lett. 26(5), 292 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Spiga, A. Lamperti, C. Wiemer, M. Perego, E. Cianci, G. Tallarida, H. Lu, M. Alia, F. Volpe, and M. Fanciulli, Microelectron. Eng. 85(12), 2414 (2008)CrossRefGoogle Scholar
  16. 16.
    T.V. Kundozerova, A.M. Grishin, G.B. Stefanovich, and A.A. Velichko, IEEE Trans. Electron Devices 59(4), 1144 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Singh, H.M. Haverinen, Y. Yoshioka, and G.E. Jabbour, in Inkjet Technology for Digital Fabrication, ed. by I.M. Hutchings, G. D.rtin (Wiley, 2012), pp. 207–235Google Scholar
  18. 18.
    N. Gergel-Hackett, B. Hamadani, B. Dunlap, J. Suehle, C. Richter, C. Hacker, and D. Gundlach, IEEE Electron Device Lett. 30(7), 706 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Liu, D. Xue, and K. Li, Nanoscale Res. Lett. 6, 138 (2011)CrossRefGoogle Scholar
  20. 20.
    M.C. Orilall, F. Matsumoto, Q. Zhou, H. Sai, H.D. Abruña, F.J. DiSalvo, and U. Wiesner, J. Am. Chem. Soc. 131(26), 9389 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Ristić, S. Popović, and S. Musić, Mater. Lett. 58(21), 2658 (2004)CrossRefGoogle Scholar
  22. 22.
    M. Wang, J. Han, Y. Hu, R. Guo, and Y. Yin, ACS Appl. Mater. Interfaces 8(43), 29511 (2016)CrossRefGoogle Scholar
  23. 23.
    J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, and R.S. Williams, Nanotechnology 20(21), 215201 (2009)CrossRefGoogle Scholar
  24. 24.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, and R.S. Williams, Nat. Nanotechnol. 3(7), 429 (2008)CrossRefGoogle Scholar
  25. 25.
    D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams, Nature 453(7191), 80 (2008)CrossRefGoogle Scholar
  26. 26.
    A.M. Grishin, A.A. Velichko, and A. Jalalian, Appl. Phys. Lett. 103(5), 053111 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Slesazeck, A. Ascoli, H. Mähne, R. Tetzlaff, and T. Mikolajick, in Nonlinear Dynamics of Electronic Systems (Springer, Cham, 2014), Communications in Computer and Information Science, pp. 156–164Google Scholar
  28. 28.
    M.D. Pickett, and R.S. Williams, Nanotechnology 23(21), 215202 (2012)CrossRefGoogle Scholar
  29. 29.
    M.K. Hota, M.K. Bera, and M.K. Bera, J. Nanosci. Nanotechnol. 14(5), 3538 (2014)CrossRefGoogle Scholar
  30. 30.
    K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, and H. Takagi, Jpn. J. Appl. Phys. 47(8R), 6266 (2008)CrossRefGoogle Scholar
  31. 31.
    H.D. Lee, B. Magyari-Köpe, and Y. Nishi, Phys. Rev. B 81(19), 193202 (2010)CrossRefGoogle Scholar
  32. 32.
    A.A. Ansari, and A. Qadeer, J. Phys. D Appl. Phys. 18(5), 911 (1985)CrossRefGoogle Scholar
  33. 33.
    K. Lazarova, M. Vasileva, G. Marinov, and T. Babeva, Opt. Laser Technol. 58, 114 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Sim, D. Choi, D. Lee, M. Hasan, C.B. Samantaray, and H. Hwang, Microelectron. Eng. 80, 260 (2005)CrossRefGoogle Scholar
  35. 35.
    H. Baek, C. Lee, J. Choi, and J. Cho, Langmuir 29(1), 380 (2013)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Functional Materials & Devices Laboratory, Department of Electrical EngineeringIIT DelhiHauz KhasIndia
  2. 2.Wafer Level Characterization Laboratory, Department of Electrical EngineeringIIT DelhiHauz KhasIndia

Personalised recommendations