Synergistic Influence of Cu Intercalation on Electronic and Thermal Properties of n-Type CuxBi2Te2.7Se0.3 Polycrystalline Alloys

  • Hyun-jun Cho
  • Weon Ho Shin
  • Sung-sil Choo
  • Ji-il Kim
  • Joonyeon Yoo
  • Sang-il KimEmail author
Topical Collection: International Conference on Thermoelectrics 2018
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018


Cu intercalation is known to be an effective strategy for improving the reproducibility of thermoelectric properties in n-type Bi2Te2.7Se0.3 alloys. In this study, the effect of Cu intercalation on the electronic and thermal properties of n-type Bi2Te2.7Se0.3 polycrystalline alloys was investigated systematically with respect to bipolar conduction and point defect phonon scattering by using the two-band model and Debye–Callaway model. The mobility and concentration of majority carriers (electrons) increased simultaneously while those of minority carriers (holes) decreased with increase in the amount of Cu. Thus, bipolar conduction, which has a detrimental effect on both electronic and thermal properties, was gradually reduced in the Cu-intercalated Bi2Te2.7Se0.3 samples. The reduction of the lattice thermal conductivity was analyzed quantitatively to show that Cu intercalation was also effective for enhancing point defect phonon scattering as interstitials. Thus, Cu intercalation in n-type Bi2Te2.7Se0.3 alloys enhanced the thermoelectric properties by controlling bipolar conduction and phonon scattering synergistically.


Thermoelectric single parabolic band model bipolar conduction Callaway model lattice thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Samsung Research Funding and Incubation Center of Samsung Electronics under Project No. SRFC-MA1701-05.


  1. 1.
    L.E. Bell, Science 321, 1457 (2014).CrossRefGoogle Scholar
  2. 2.
    H. Scherrer, S. Scherrer.Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Press, 2006), p. 27-1.Google Scholar
  3. 3.
    H. Mun, K. Lee, S. Kim, J.Y. Kim, J. Lee, J.H. Lim, H. Park, J. Roh, and S. Kim, Materials 8, 959 (2015).CrossRefGoogle Scholar
  4. 4.
    H. Kim, J.K. Lee, S.D. Park, B. Ryu, J.E. Lee, B.S. Kim, B.K. Min, S.J. Joo, H.W. Lee, and Y.R. Cho, Electron. Mater. Lett. 12, 290 (2016).CrossRefGoogle Scholar
  5. 5.
    H.S. Kim, N.A. Heinz, Z.M. Gibbs, Y. Tang, S.D. Kang, and G.J. Snyder, Mater. Today 20, 452 (2017).CrossRefGoogle Scholar
  6. 6.
    S.V. Faleev and F. Leonard, Phys. Rev. B 77, 214304 (2008).CrossRefGoogle Scholar
  7. 7.
    S.I. Kim, S. Hwang, J.W. Roh, K. Ahn, D.H. Yeon, K.H. Lee, and S.W. Kim, J. Mater. Res. 27, 2449 (2012).CrossRefGoogle Scholar
  8. 8.
    C.M. Jaworski, V. Kulbachinskii, and J.P. Heremans, Phys. Rev. B 80, 233201 (2009).CrossRefGoogle Scholar
  9. 9.
    S.W. Hasan, H. Mun, S.I. Kim, J.Y. Cho, J.W. Roh, S. Yang, S.M. Choi, K.H. Lee, and S.W. Kim, J. Nanomater. 2013, 905389 (2013).CrossRefGoogle Scholar
  10. 10.
    R.S. Zhai, Y.H. Wu, T.J. Zhu, and X.B. Zhao, Rare Met. 37, 308 (2018).CrossRefGoogle Scholar
  11. 11.
    J. Cui, W. Xiu, and H. Xue, J. Appl. Phys. 101, 123713 (2007).CrossRefGoogle Scholar
  12. 12.
    I.H. Kim, S.M. Choi, W.S. Seo, and D.I. Cheong, Nanoscale Res. Lett. 7, 2 (2012).CrossRefGoogle Scholar
  13. 13.
    H.S. Kim, S.I. Kim, K.H. Lee, S.W. Kim, and G.J. Snyder, Phys. Status Solidi B 254, 1600103 (2017).CrossRefGoogle Scholar
  14. 14.
    S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 109 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 117, 334 (2005).CrossRefGoogle Scholar
  16. 16.
    W.S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, and Z. Ren, Adv. Energy Mater. 1, 577 (2011).CrossRefGoogle Scholar
  17. 17.
    Q. Lognone and F. Gascoin, J. Alloys Compd. 610, 1 (2014).CrossRefGoogle Scholar
  18. 18.
    A.F. May and G.J. Snyder, Materials, Preparation, and Characterization in Thermoelectric, ed. D.M. Rowe (Boca Raton: CRC Press, 2012), p. 11–1.Google Scholar
  19. 19.
    J. Callaway, Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
  20. 20.
    K.H. Lee, S.M. Choi, S.I. Kim, J.W. Roh, D.J. Yang, W.H. Shin, H.J. Park, K. Lee, S. Hwang, J.H. Lee, H. Mun, and S.W. Kim, Curr. Appl. Phys. 15, 190 (2015).CrossRefGoogle Scholar
  21. 21.
    K.H. Lee, S.I. Kim, H. Mun, B. Ryu, S.M. Choi, H.J. Park, S. Hwang, and S.W. Kim, J. Mater. Chem. C 3, 10604 (2015).CrossRefGoogle Scholar
  22. 22.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).CrossRefGoogle Scholar
  23. 23.
    H.S. Kim, K.H. Lee, J. Yoo, J. Youn, J.W. Roh, S.I. Kim, and S.W. Kim, Materials 10, 763 (2017).CrossRefGoogle Scholar
  24. 24.
    H.S. Kim, K.H. Lee, J. Yoo, W.H. Shin, J.W. Roh, J.Y. Hwang, S.W. Kim, and S.I. Kim, J. Alloys Compd. 741, 869 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hyun-jun Cho
    • 1
  • Weon Ho Shin
    • 2
  • Sung-sil Choo
    • 1
  • Ji-il Kim
    • 1
  • Joonyeon Yoo
    • 1
  • Sang-il Kim
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulSouth Korea
  2. 2.Energy and Environment DivisionKorea Institute of Ceramic Engineering and TechnologyJinjuSouth Korea

Personalised recommendations