Mechanochemistry for Thermoelectrics: Nanobulk Cu6Fe2SnS8/Cu2FeSnS4 Composite Synthesized in an Industrial Mill

  • Peter Baláž
  • Michal HegedüsEmail author
  • Mike Reece
  • Rui-Zhi Zhang
  • Taichao Su
  • Ivan Škorvánek
  • Jaroslav Briančin
  • Matej Baláž
  • Matúš Mihálik
  • Matej Tešínsky
  • Marcela Achimovičová
Topical Collection: International Conference on Thermoelectrics 2018
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018


We demonstrate the use of elemental precursors Cu, Fe, Sn, and S to obtain a mawsonite (Cu6Fe2SnS8)/stannite (Cu2FeSnS4) composite using a solid-state process at ambient temperature in an industrial eccentric vibration mill for up to 240 min in argon atmosphere. The samples were characterized using various analytical techniques such as x-ray diffractometry, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and nitrogen adsorption and magnetic measurements. For thermoelectric measurements, the properties of samples densified via spark plasma sintering were measured using standard methods needed to calculate the figure of merit. The transformation of elemental precursors to a composite mixture proceeds relatively rapidly via several intermediate steps. The kinetics of this transformation is also in good agreement with the results for the unconsumed sulfur content in the reaction mixtures and can also be correlated with the magnetization results. Based on the thermoelectric measurements of the sample milled for 240 min, the calculated figure of merit reached a value of zT = 0.51 at 623 K due to a very low lattice thermal conductivity of 0.29 W/m-K and moderate power factor of 3.3 μW/cm-K2. The thermoelectric results obtained for the material are comparable to previously published values for pure mawsonite prepared from elements by laboratory ball milling.


Mawsonite/stannite composite mixture advanced material thermoelectric material industrial milling mechanochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the projects of the Slovak Research and Development Agency APVV (VV-0103-14), Slovak Grant Agency VEGA (2/0044/18, 2/0065/18), and ITMS 26220120035. The support of European Project COST (OC-2015-1-19345) is also acknowledged.

Supplementary material

11664_2019_6972_MOESM1_ESM.pdf (768 kb)
Supplementary material 1 (PDF 768 kb)


  1. 1.
    K. Chen, B.L. Du, N. Bonini, C. Weber, H.X. Yan, and M.J. Reece, J. Phys. Chem. C 120, 27135 (2016).Google Scholar
  2. 2.
    S. Hebert, D. Berthebaud, R. Daou, Y. Breard, D. Pelloquin, E. Guilmeau, F. Gascoin, O. Lebedev, and A. Maignan, J. Phys. Condens. Matter 28, 013001 (2016).Google Scholar
  3. 3.
    X. Zhang and L.D. Zhao, J. Materiomics 1, 92 (2015).Google Scholar
  4. 4.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).Google Scholar
  5. 5.
    H.J. Goldsmid, Introduction to Thermoelectricity (Berlin: Springer, 2010).Google Scholar
  6. 6.
    K. Suekuni, K. Tsuruta, T. Ariga and M. Koyano, Appl. Phys. Express 5, article ID 051201 (2012).Google Scholar
  7. 7.
    K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto and M. Koyano, J. Appl. Phys. 113, article ID 043712 (2013).Google Scholar
  8. 8.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X.Y. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).Google Scholar
  9. 9.
    X. Lu and D.T. Morelli, Phys. Chem. Chem. Phys. 15, 5762 (2013).Google Scholar
  10. 10.
    C.M. Fella, Y.E. Romanyuk, and A.N. Tiwari, Sol. Energy Mater. Sol. Cells 119, 276 (2013).Google Scholar
  11. 11.
    K. Suekuni and T. Takabatake, APL Mater. 4, 104503 (2016).Google Scholar
  12. 12.
    S. Fasolin, S. Fiameni, C. Fanciulli, S. Battiston, A. Famengo, and M. Fabrizio, J. Nanosci. Nanotechnol. 17, 1645 (2017).Google Scholar
  13. 13.
    P. Baláž and M. Achimovičová, Int. J. Miner. Process. 81, 44 (2006).Google Scholar
  14. 14.
    P. Baláž, M. Achimovičová, J. Ficeriová, R. Kammel, and V. Šepelák, Hydrometallurgy 47, 297 (1998).Google Scholar
  15. 15.
    M. Rull-Bravo, A. Moure, J.F. Fernandez, and M. Martin-Gonzalez, RSC Adv. 5, 41653 (2015).Google Scholar
  16. 16.
    R.Z. Zhang, K. Chen, B. Du, and M.J. Reece, J. Mater. Chem. A 5, 5013 (2017).Google Scholar
  17. 17.
    B.L. Du, R.Z. Zhang, K. Chen, A. Mahajan, and M.J. Reece, J. Mater. Chem. A 5, 3249 (2017).Google Scholar
  18. 18.
    V.P. Kumar, T. Barbier, V. Caignaert, B. Raveau, R. Daou, B. Malaman, G. Le Caer, P. Lemoine, and E. Guilmeau, J. Phys. Chem. C 121, 16454 (2017).Google Scholar
  19. 19.
    C. Bourges, M. Gilmas, P. Lemoine, N.E. Mordvinova, O.I. Lebedev, E. Hug, V. Nassif, B. Malaman, R. Daou, and E. Guilmeau, J. Mater. Chem. C 4, 7455 (2016).Google Scholar
  20. 20.
    C. Bourges, Y. Bouyrie, A.R. Supka, R.A. Al Orabi, P. Lemoin, O.I. Lebedev, M. Ohta, K. Suekuni, V. Nassif, V. Hardy, R. Daou, Y. Miyazaki, M. Fornari, and E. Guilmeau, JACS 140, 2186 (2018).Google Scholar
  21. 21.
    G. Guelou, A.V. Powell, and P. Vaqueiro, J. Mater. Chem. C 3, 10624 (2015).Google Scholar
  22. 22.
    S.O.J. Long, A.V. Powell, P. Vaqueiro, and S. Hull, Chem. Mater. 30, 456 (2018).Google Scholar
  23. 23.
    V.P. Kumar, L. Paradis-Fortin, P. Lemoine, V. Caignaert, B. Raveau, B. Malaman, G. Le Caer, S. Cordier, and E. Guilmeau, Inorg. Chem. 56, 13376 (2017).Google Scholar
  24. 24.
    P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J.M. Criado, F. Delogu, E. Dutková, E. Gaffet, F.J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, and K. Wieczorek-Ciurowa, Chem. Soc. Rev. 42, 7571 (2013).Google Scholar
  25. 25.
    S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, and D.C. Waddell, Chem. Soc. Rev. 41, 413 (2012).Google Scholar
  26. 26.
    S.L. James and T. Friscic, Chem. Soc. Rev. 42, 7494 (2013).Google Scholar
  27. 27.
    W. Jones and M.D. Eddleston, Faraday Discuss. 170, 9 (2014).Google Scholar
  28. 28.
    J.L. Do and T. Friščić, ACS Central Sci. 3, 13 (2017).Google Scholar
  29. 29.
    P. Baláž and E. Dutková, Miner. Eng. 22, 681 (2009).Google Scholar
  30. 30.
    P. Vaqueiro and A.V. Powell, J. Mater. Chem. 20, 10950 (2010).Google Scholar
  31. 31.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).Google Scholar
  32. 32.
    J.P. Heremans, M.S. Dresselhaus, L.E. Bell, and D.T. Morelli, Nat. Nanotechnol. 8, 471 (2013).Google Scholar
  33. 33.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).Google Scholar
  34. 34.
    S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).Google Scholar
  35. 35.
    T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).Google Scholar
  36. 36.
    J. Rodriguez-Carvajal, LLB Sacley LCSIM Rennes. Fr. (2003).Google Scholar
  37. 37.
    M. Baláž, A. Zorkovská, F. Urakaev, P. Baláž, J. Briančin, Z. Bujňáková, M. Achimovičová, and E. Gock, RSC Adv. 6, 87836 (2016).Google Scholar
  38. 38.
    W. Bao and M. Ichimura, Int. J. Photoenergy, article ID 592079 (2015).Google Scholar
  39. 39.
    P.W. Guan, S.L. Shang, G. Lindwall, T. Anderson, and Z.K. Liu, Sol. Energy 155, 745 (2017).Google Scholar
  40. 40.
    J.T. Szymanski, Can. Mineral. 14, 529 (1976).Google Scholar
  41. 41.
    T. Yamanaka, Am. Mineral. 61, 260 (1976).Google Scholar
  42. 42.
    X.L. Zhang, M.M. Han, Z. Zeng, and H.Q. Lin, RSC Adv. 6, 15424 (2016).Google Scholar
  43. 43.
    V.S. Zakhvalinskii, T.T.H. Nguyen, T.T. Pham, N.T. Dang, E.A. Piliuk, and S.V. Taran, J. Electron. Mater. 46, 3523 (2017).Google Scholar
  44. 44.
    B. Donovan and G. Reichenbaum, Br. J. Appl. Phys. 9, 474 (1958).Google Scholar
  45. 45.
    J.W. Zhang, R.H. Liu, N.A. Cheng, Y.B. Zhang, J.H. Yang, C. Uher, X. Shi, L.D. Chen, and W.Q. Zhang, Adv. Mater. 26, 3848 (2014).Google Scholar
  46. 46.
    C. Xiao, K. Li, J.J. Zhang, W. Tong, Y.W. Liu, Z. Li, P.C. Huang, B.C. Pan, H.B. Su, and Y. Xie, Mater. Horiz. 1, 81 (2014).Google Scholar
  47. 47.
    P. Vaqueiro, R.A.R. Al Orabi, S.D.N. Luu, G. Guelou, A.V. Powell, R.I. Smith, J.P. Song, D. Wee, and M. Fornari, Phys. Chem. Chem. Phys. 17, 31735 (2015).Google Scholar
  48. 48.
    Z.H. Ge, B.P. Zhang, Y.X. Chen, Z.X. Yu, Y. Liu, and J.F. Li, Chem. Commun. 47, 12697 (2011).Google Scholar
  49. 49.
    J. Wu, F. Li, T.R. Wei, Z.H. Ge, F.Y. Kang, J.Q. He, and J.F. Li, J. Am. Ceram. Soc. 99, 507 (2016).Google Scholar
  50. 50.
    K. Suekuni, F.S. Kim, H. Nishiate, M. Ohta, H.I. Tanaka and T. Takabatake, Appl. Phys. Lett. 105, article ID 132107 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Peter Baláž
    • 1
  • Michal Hegedüs
    • 2
    Email author
  • Mike Reece
    • 3
  • Rui-Zhi Zhang
    • 3
  • Taichao Su
    • 3
  • Ivan Škorvánek
    • 4
  • Jaroslav Briančin
    • 1
  • Matej Baláž
    • 1
  • Matúš Mihálik
    • 4
  • Matej Tešínsky
    • 1
  • Marcela Achimovičová
    • 1
    • 5
  1. 1.Institute of GeotechnicsSlovak Academy of SciencesKošiceSlovakia
  2. 2.Institute of Chemistry, Faculty of ScienceP. J. Šafárik University in KoŠiceKošiceSlovakia
  3. 3.School of Engineering and Material ScienceQueen Mary University of LondonLondonUK
  4. 4.Institute of Experimental PhysicsSlovak Academy of SciencesKošiceSlovakia
  5. 5.Institute of Mineral and Waste Processing, Waste Disposal and GeomechanicsUniversity of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations