Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2754–2760 | Cite as

Amorphous Cobalt Carbon Nanofibers Decorated with Conductive Ag as Free-Standing Flexible Electrode Material for High-Performance Supercapacitors

  • Xingwei Sun
  • Chunping LiEmail author
  • Jie Bai
Article
  • 72 Downloads

Abstract

Carbon nanofiber-based amorphous cobalt oxide (CoxOy/CNFs) embedded with Ag have been prepared by a simple electrospinning technique followed by heat treatment. Because the composite material prepared by this method showed good flexibility, addition of a conductive agent and binder is not required for use as an electrode material in supercapacitors. The Co-Ag/CNFs composite materials exhibited remarkably improved electrical conductivity and specific capacitance with good cycling stability in comparison with electrodes based on CoxOy/CNFs, owing to the presence of Ag; For instance, the Co-Ag/CNFs(2) composite electrode exhibited specific capacitance of 698 F g−1 at 1 A g−1 and good cycling stability with ∼ 81.1% capacitance retention over 3000 cycles. The composite materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD) analysis, Raman spectra, and thermogravimetric analysis (TGA), confirming successful combination of the amorphous cobalt oxide and silver metal element with the carbon nanofibers.

Keywords

Cobalt oxide Ag carbon nanofibers supercapacitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 21766022).

Supplementary material

11664_2019_6971_MOESM1_ESM.pdf (642 kb)
Supplementary material 1 (PDF 642 kb)

References

  1. 1.
    K. Tang, Y.P. Li, H.B. Cao, F. Duan, J. Zhang, Y. Zhang, and Y. Wang, RSC Adv. 5, 40163 (2015).CrossRefGoogle Scholar
  2. 2.
    M.M. Shaijumon, F.S. Ou, L.J. Ci, and P.M. Ajayan, Chem. Commun. 23, 2373 (2008).CrossRefGoogle Scholar
  3. 3.
    G.H. Yu, L.B. Hu, N.A. Liu, H.L. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z.N. Bao, Nano Lett. 11, 4438 (2011).CrossRefGoogle Scholar
  4. 4.
    Y.K. Zhang, J.L. Li, F.Y. Kang, F. Gao, and X.D. Wang, Int. J. Hydrog. Energy 37, 860 (2012).CrossRefGoogle Scholar
  5. 5.
    S.C. Sekhar, G. Nagaraju, and J.S. Yu, Nano Energy 36, 58 (2017).CrossRefGoogle Scholar
  6. 6.
    P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy Environ. Sci. 3, 1238 (2010).CrossRefGoogle Scholar
  7. 7.
    T. Brousse, D. Belanger, and J.W. Long, J. Electrochem. Soc. 162, 5185 (2015).CrossRefGoogle Scholar
  8. 8.
    X.H. Xia, J.P. Tu, Y.Q. Zhang, X.L. Wang, X.D. Gu, X.D. Zhao, and H.J. Fan, ACS Nano 6, 5531 (2012).CrossRefGoogle Scholar
  9. 9.
    Y.Q. Zhang, X.H. Xia, J.P. Tu, Y.J. Mai, S.J. Shi, X.L. Wang, and C.D. Gu, J. Power Sources 199, 413 (2012).CrossRefGoogle Scholar
  10. 10.
    V. Gupta, T. Kusahara, H. Toyama, S. Gupta, and N. Miura, Electrochem. Commun. 9, 2315 (2007).CrossRefGoogle Scholar
  11. 11.
    X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, and X.B. Zhao, J. Phys. Chem. C 115, 22662 (2011).CrossRefGoogle Scholar
  12. 12.
    M.E. Roberts, D.R. Wheeler, B.B. McKenzie, and B.C. Bunker, J. Mater. Chem. 19, 6977 (2009).CrossRefGoogle Scholar
  13. 13.
    S. Biswas and L.T. Drzal, Chem. Mater. 22, 5667 (2010).CrossRefGoogle Scholar
  14. 14.
    M.J. Zhi, C.C. Xiang, J.T. Li, M. Li, and N.Q. Wu, Nanoscale 5, 72 (2013).CrossRefGoogle Scholar
  15. 15.
    W.F. Wei, X.W. Cui, W.X. Chen, and D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011).CrossRefGoogle Scholar
  16. 16.
    V. Subramanian, H.W. Zhu, and B.Q. Wei, J. Power Sources 159, 361 (2006).CrossRefGoogle Scholar
  17. 17.
    C.P. Yuan, H.G. Wang, J.Q. Liu, Q. Wu, Q. Duan, and Y.H. Li, J. Colloid Interface Sci. 494, 274 (2017).CrossRefGoogle Scholar
  18. 18.
    L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
  19. 19.
    V.V. Pokropivny and V.V. Skorokhod, Mater. Sci. Eng. C 27, 990 (2007).CrossRefGoogle Scholar
  20. 20.
    J.N. Tiwari, R.N. Tiwari, and K.S. Kim, Prog. Mater. Sci. 57, 724 (2012).CrossRefGoogle Scholar
  21. 21.
    Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).CrossRefGoogle Scholar
  22. 22.
    W.J. Gang, Y. Yang, Z.H. Huang, and F. Kang, Electrochim. Acta 75, 213 (2012).CrossRefGoogle Scholar
  23. 23.
    T. Jin, Q.Q. Han, Y.J. Wang, and L.F. Jiao, Small 14, 1703086 (2017).CrossRefGoogle Scholar
  24. 24.
    Y.H. Wang and I. Zhitomirsky, Mater. Lett. 65, 1759 (2011).CrossRefGoogle Scholar
  25. 25.
    D.D. Lu, Y.G. Li, and C.P. Wong, J. Adhes. Sci. Technol. 22, 815 (2008).CrossRefGoogle Scholar
  26. 26.
    Y.G. Sun, Nanoscale 2, 1626 (2010).CrossRefGoogle Scholar
  27. 27.
    X.W. Sun, C.P. Li, G.F. Huang, and J. Bai, J. Mater. Sci. Mater. Electron. 28, 12448 (2017).CrossRefGoogle Scholar
  28. 28.
    X. Chen, B.T. Zhao, Y. Cai, M. Tade, and Z.P. Shao, Nanoscale 5, 12589 (2013).CrossRefGoogle Scholar
  29. 29.
    B.H. Kim, C.H. Kim, K.S. Yang, A. Rahy, and D.J. Yang, Electrochim. Acta 83, 335 (2012).CrossRefGoogle Scholar
  30. 30.
    X.W. Sun, C.P. Li, and J. Bai, J. Mater. Sci. Mater. Electron. 29, 19382 (2018).CrossRefGoogle Scholar
  31. 31.
    A. Yu, C. Lee, N.S. Lee, M.H. Kim, and Y. Lee, ACS. Appl. Mater. Interfaces 8, 32833 (2016).CrossRefGoogle Scholar
  32. 32.
    S.C. Petitto, E.M. Marsh, G.A. Carson, and M.A. Langell, J. Mol. Catal. A Chem. 281, 49 (2008).CrossRefGoogle Scholar
  33. 33.
    H. Xia, C.Y. Hong, X.Q. Shi, B. Li, G.L. Yuan, Q.F. Yao, and J.P. Xie, J. Mater. Chem. A 3, 1216 (2015).CrossRefGoogle Scholar
  34. 34.
    G. Nagaraju, Y.H. Ko, and J.S. Yu, Cryst. Eng. Commun 16, 11027 (2014).CrossRefGoogle Scholar
  35. 35.
    D.D. Yu, J. Bai, J.Z. Wang, H.O. Liang, and C.P. Li, Appl. Surf. Sci. 399, 185 (2017).CrossRefGoogle Scholar
  36. 36.
    H.G. Wang, C.P. Yuan, R. Zhou, Q. Duan, and Y.H. Li, Chem. Eng. J. 316, 1004 (2017).CrossRefGoogle Scholar
  37. 37.
    E. Samuel, B. Joshi, H.S. Jo, Y.I. Kim, M.T. Swihart, J.M. Yun, K.H. Kim, and S.S. Yoon, J. Alloys Compd. 728, 1362 (2017).CrossRefGoogle Scholar
  38. 38.
    S. Dou, X.Y. Li, L. Tao, J. Huo, and S.Y. Wang, Chem. Commun. 52, 9727 (2016).CrossRefGoogle Scholar
  39. 39.
    J.Y. Guo, J.Q. Liu, H.H. Dai, R. Zhou, T.Y. Wang, C.C. Zhang, S. Ding, and H.G. Wang, J. Colloid Interface Sci. 507, 154 (2017).CrossRefGoogle Scholar
  40. 40.
    D.F. Li, H.J. Wang, and X.K. Wang, Spectrosc. Spect. Anal. 27, 2249 (2007).Google Scholar
  41. 41.
    Z.L. Xu, B. Zhang, Z.Q. Zhou, S. Abouali, G.M. Akbari, J.Q. Huang, J.Q. Huang, and J.K. Kim, RSC Adv. 4, 22359 (2014).CrossRefGoogle Scholar
  42. 42.
    C.W. Tang, C.B. Wang, and S.H. Chien, Thermochim. Acta 473, 68 (2008).CrossRefGoogle Scholar
  43. 43.
    M. Kumar, A. Subramania, and K. Balakrishnan, Electrochim. Acta 149, 152 (2014).CrossRefGoogle Scholar
  44. 44.
    T. Li, R. Li, and H. Luo, J. Mater. Chem. A 4, 18922 (2016).CrossRefGoogle Scholar
  45. 45.
    Q.W. Zhou, J.C. Xing, Y.F. Gao, Y.M. He, Z.H. Guo, and Y.M. Li, ACS. Appl. Mater. Interfaces 6, 11394 (2014).CrossRefGoogle Scholar
  46. 46.
    G.F. Huang, C.P. Li, J. Bai, X.W. Sun, and H.O. Liang, Int. J. Hydrog. Energy 41, 22144 (2016).CrossRefGoogle Scholar
  47. 47.
    H.W. Wang, H. Yi, X. Chen, and X.F. Wang, J. Mater. Chem. A 2, 1165 (2014).CrossRefGoogle Scholar
  48. 48.
    J. Wang, Y.L. Xu, X. Chen, and X.F. Sun, Compos. Sci. Technol. 67, 2981 (2007).CrossRefGoogle Scholar
  49. 49.
    Y.G. Zhou, Y. Wang, Y.M. Shi, Z.X. Huang, L. Fu, and H.Y. Yang, Adv. Energy Mater. 4, 1301788 (2014).CrossRefGoogle Scholar
  50. 50.
    L. Hao, J. Wang, L.F. Shen, J.J. Zhu, B. Ding, and X.G. Zhang, RSC Adv. 6, 25056 (2016).CrossRefGoogle Scholar
  51. 51.
    J. Jun, J.S. Lee, D.H. Shin, S.G. Kim, and J. Jang, Nanoscale 7, 16026 (2015).CrossRefGoogle Scholar
  52. 52.
    H.G. Wang, S. Yuan, D.L. Ma, X.B. Zhang, and M.J. Yan, Energy Environ. Sci. 8, 1660 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHohhotPeople’s Republic of China

Personalised recommendations