Journal of Electronic Materials

, Volume 48, Issue 5, pp 2780–2787 | Cite as

Performance and Durability of Pt-Ni Catalysts Supported on Polypyrrole-Carbon for Fuel Cells

  • Pengcheng Zhang
  • Anwen Tao
  • Yongxin Tan
  • Jiang Jin
  • Hua ZhangEmail author


Proton exchange membrane fuel cells are environmentally friendly energy conversion systems, but their performance is hampered by poor activity and durability of the catalyst. In the work presented herein, a PtNi catalyst supported on polypyrrole-carbon (PPy-C) was prepared using an electrochemical technique. The molecular structure of the PPy was analyzed by Fourier-transform infrared spectrometry. The surface morphology and structure of the catalysts were characterized by scanning electron microscopy and transmission electron microscopy. Cell polarization curves and impedance spectra showed that PtNi/PPy-C exhibited higher catalytic activity, which can be ascribed to the small size and uniform distribution of the PtNi nanoparticles. Linear sweep voltammetry measurements on a rotating disk electrode indicated that the oxygen reduction reaction kinetics on the surface of PtNi/PPy-C mainly followed a four-electron transfer pathway. The degradation of the performance of PtNi/PPy-C was slower than that of commercial Pt/C in accelerated durability testing. The weakened agglomeration effect during long-term operation is attributed to the corrosion resistance of the PPy carrier with high electrical conductivity. The composite carrier enhanced the catalytic activity and durability of the PtNi/PPy-C.


Fuel cells polypyrrole Pt-Ni catalyst durability PEMFC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions. Zelin Chen (Tianjin University) is gratefully acknowledged for technical support.


  1. 1.
    E. Dijoux, N.Y. Steiner, M. Benne, M. Pera, and B.G. Perez, J. Power Sources 359, 119 (2017).CrossRefGoogle Scholar
  2. 2.
    W.R.W. Daud, R.E. Rosli, E.H. Majlan, S.A.A. Hamid, R. Mohamed, and T. Husaini, Renew. Energy 113, 620 (2017).CrossRefGoogle Scholar
  3. 3.
    Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, and X.C. Adroher, Appl. Energy 88, 981 (2011).CrossRefGoogle Scholar
  4. 4.
    J. Chen, D. Zhou, C. Lyu, and C. Lu, Int. J. Hydrogen Energy 42, 20230 (2017).CrossRefGoogle Scholar
  5. 5.
    J. Li, J. Gu, H. Li, Y. Liang, Y. Hao, X. Sun, and L. Wang, Microporous Mesoporous Mater. 128, 144 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Sevilla and A.B. Fuertes, Carbon 44, 468 (2006).CrossRefGoogle Scholar
  7. 7.
    Y.J. Ren, J. Chen, C.L. Zeng, C. Li, and J.J. He, Int. J. Hydrogen Energy 41, 8542 (2016).CrossRefGoogle Scholar
  8. 8.
    S.M. Unni, V.M. Dhavale, V.K. Pillai, and S. Kurungot, J. Phys. Chem. C 114, 14654 (2010).CrossRefGoogle Scholar
  9. 9.
    R. Escudero Cid, J.L. Gomez De La Fuente, S. Rojas, J.L. Garcia Fierro and P. Ocon, ChemCatChem, 5, 3680 (2013).Google Scholar
  10. 10.
    X. Yuan, X. Zeng, H. Zhang, Z. Ma, and C. Wang, J. Am. Chem. Soc. 132, 1754 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Mokrane, L. Makhloufi, and N. Alonso-Vante, J. Solid State Electrochem. 12, 569 (2008).CrossRefGoogle Scholar
  12. 12.
    L. Jiwei, Q. Jingxia, Y. Miao, and J. Chen, J. Mater. Sci. 43, 6285 (2008).CrossRefGoogle Scholar
  13. 13.
    H. Zhao, L. Li, J. Yang, Y. Zhang, and H. Li, Electrochem. Commun. 10, 876 (2008).CrossRefGoogle Scholar
  14. 14.
    L. Zhang, S. Liu, H. Han, Y. Zhou, S. Hu, C. He, and Q. Yan, Surf. Coat. Technol. 341, 95 (2018).CrossRefGoogle Scholar
  15. 15.
    W. Zhao, Y. Yang, and H. Zhang, Electrochim. Acta 99, 273 (2013).CrossRefGoogle Scholar
  16. 16.
    C. Wang, Z.L. Chen, A.W. Tao, and H. Zhang, J. Electrochem. Energy Convers. Storage 13, 021001 (2016). Scholar
  17. 17.
    M. Oezaslan, F. Hasche, and P. Strasser, Chem. Mater. 23, 2159 (2011).CrossRefGoogle Scholar
  18. 18.
    B. Narayanamoorthy, V. Linkov, C. Sita, and S. Pasupathi, Electrocatalysis 7, 400 (2016).CrossRefGoogle Scholar
  19. 19.
    L. Ou, Comput. Theor. Chem. 1048, 69 (2014).CrossRefGoogle Scholar
  20. 20.
    H. Wu, D. Wexler, and H. Liu, Mater. Chem. Phys. 136, 845 (2012).CrossRefGoogle Scholar
  21. 21.
    R. Chattot, T. Asset, P. Bordet, J. Drnec, L. Dubau, and F. Maillard, ACS Catal. 7, 398 (2017).CrossRefGoogle Scholar
  22. 22.
    H.R. Colon-Mercado, H. Kim, and B.N. Popov, Electrochem. Commun. 6, 795 (2004).CrossRefGoogle Scholar
  23. 23.
    Q. Wang, Q. Zhao, Y. Su, G. Zhang, G. Xu, Y. Li, B. Liu, D. Zheng, and J. Zhang, J. Mater. Chem. A 4, 12296 (2016).CrossRefGoogle Scholar
  24. 24.
    R. Xu, F. Xu, M. Pan, and S. Mu, RSC Adv. 3, 764 (2013).CrossRefGoogle Scholar
  25. 25.
    Y. Wang, G.A. Sotzing, and R.A. Weiss, Chem. Mater. 20, 2574–2582 (2008).CrossRefGoogle Scholar
  26. 26.
    J. Xu, Y. Zhang, D. Zhang, Y. Tang, and H. Cang, Prog. Org. Coat. 88, 84 (2015).CrossRefGoogle Scholar
  27. 27.
    G.A. Mun, Z.S. Nurkedva, S.A. Dergunov, I.K. Nam, T.P. Maimakov, E.M. Shaikhutdinov, S.C. Lee, and K. Park, React. Funct. Polym. 68, 389 (2008).CrossRefGoogle Scholar
  28. 28.
    R. Lee, R. Temmer, T. Tamm, A. Aabloo, and R. Kiefer, React. Funct. Polym. 73, 1072 (2013).CrossRefGoogle Scholar
  29. 29.
    F. Liu, B. Li, C. Liu, W. Kong, X. Yi, A. Zheng, and C. Qi, Catal. Sci. Technol. 6, 2995 (2016).CrossRefGoogle Scholar
  30. 30.
    C. Xu, M.A. Hoque, G. Chiu, T. Sung, and Z. Chen, RSC Adv. 6, 112226 (2016).CrossRefGoogle Scholar
  31. 31.
    F.J. Nores-Pondal, I.M.J. Vilella, H. Troiani, M. Granada, S.R. de Miguel, O.A. Scelza, and H.R. Corti, Int. J. Hydrogen Energy 34, 8193 (2009).CrossRefGoogle Scholar
  32. 32.
    F. Xu, D. Wang, B. Sa, Y. Yu, and S. Mu, Int. J. Hydrogen Energy 42, 13011 (2017).CrossRefGoogle Scholar
  33. 33.
    N. Kristian, Y. Yu, J. Lee, X. Liu, and X. Wang, Electrochim. Acta 56, 1000 (2010).CrossRefGoogle Scholar
  34. 34.
    J. Liao, W. Ding, S. Tao, Y. Nie, W. Li, G. Wu, S. Chen, L. Li, and Z. Wei, Chin. J. Catal. 37, 1142 (2016).CrossRefGoogle Scholar
  35. 35.
    S. Cavaliere, I. Jimenez-Morales, G. Ercolano, I. Savych, D. Jones, and J. Roziere, ChemElectroChem 2, 1966 (2015).CrossRefGoogle Scholar
  36. 36.
    G. Ozouf and C. Beauger, J. Mater. Sci. 51, 5305 (2016).CrossRefGoogle Scholar
  37. 37.
    Y. Liu, S. Shrestha, and W.E. Mustain, ACS Catal. 2, 456 (2012).CrossRefGoogle Scholar
  38. 38.
    P. Ferreira-Aparicio, A.M. Chaparro, M. Antonia Folgado, J.J. Conde, E. Brightman, and G. Hinds, ACS Appl. Mater. Interfaces 9, 10626 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Pengcheng Zhang
    • 1
  • Anwen Tao
    • 1
  • Yongxin Tan
    • 1
  • Jiang Jin
    • 1
  • Hua Zhang
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations