Advertisement

Quad-Spectral Perfect Metamaterial Absorber at Terahertz Frequency Based on a Double-Layer Stacked Resonance Structure

  • Ben-Xin WangEmail author
  • Qin Xie
  • Guangxi Dong
  • Wei-Qing Huang
Article
  • 13 Downloads

Abstract

Development of multispectral perfect light absorbers for applications in biological sensing, spectroscopic imaging, and selective thermal emitters is urgently required. Unfortunately, current multispectral absorbers are typically only based on a combination of fundamental resonances of multiple resonators using the design concepts of a coplanar superunit structure or multiple vertically stacked layers, which does not introduce new resonances while such structures are difficult to fabricate. In this work, a type of quad-spectral absorber formed by a double-layer stacked resonant structure is presented and demonstrated. Numerical simulations show that the suggested structure can achieve near 100% absorption at four frequency bands. The quad-spectral absorption results from excitation of two sets consisting of the fundamental mode and third-order resonance of the designed structure. The suggested device is insensitive to the polarization of the incident light due to the high degree of symmetry of the resonance structure. Device parameters are investigated to further explore the physical origin of the quad-spectral absorption. Moreover, it is revealed that the number of resonance peaks can be further increased by employing one more layer.

Keywords

Metamaterials terahertz multispectral absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11647143), Natural Science Foundation of Jiangsu Province (Grant No. BK20160189), and the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51721B).

References

  1. 1.
    S. Zhang, D.A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys. Rev. Lett. 101, 047401 (2008).CrossRefGoogle Scholar
  2. 2.
    B. Lukyanchuk, N.I. Zheludev, S.A. Maier, N. Halas, J.P. Nordlander, H. Giessen, and C.T. Chong, Nat. Mater. 9, 707 (2010).CrossRefGoogle Scholar
  3. 3.
    Y.S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, Appl. Phys. Lett. 102, 111908 (2013).CrossRefGoogle Scholar
  4. 4.
    L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, Appl. Phys. Lett. 103, 171107 (2013).CrossRefGoogle Scholar
  5. 5.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).CrossRefGoogle Scholar
  6. 6.
    J. Zhao, X. Huang, and H. Yang, Appl. Phys. A 122, 487 (2016).CrossRefGoogle Scholar
  7. 7.
    G.M. Akselrod, J. Huang, T.B. Hoang, P.T. Bowen, L. Su, D.R. Smith, and M.H. Mikkelsen, Adv. Mater. 27, 8028 (2015).CrossRefGoogle Scholar
  8. 8.
    L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, Appl. Phys. Lett. 106, 031107 (2015).CrossRefGoogle Scholar
  9. 9.
    F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, Appl. Phys. Lett. 106, 091907 (2015).CrossRefGoogle Scholar
  10. 10.
    R. Walter, A. Till, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, Adv. Opt. Mater. 3, 398 (2015).CrossRefGoogle Scholar
  11. 11.
    P. Rufangura and C. Sabah, J. Alloys Compd. 671, 43 (2016).CrossRefGoogle Scholar
  12. 12.
    H. Xiong, L.L. Zhong, C.M. Luo, and J.S. Hong, AIP Adv. 5, 067162 (2015).CrossRefGoogle Scholar
  13. 13.
    G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, Opt. Express 24, 1518 (2015).CrossRefGoogle Scholar
  14. 14.
    X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, Appl. Phys. Lett. 109, 062902 (2016).CrossRefGoogle Scholar
  15. 15.
    B.X. Wang, G.Z. Wang, and L.L. Wang, Plasmonics 11, 523 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Zhong, G.M. Han, S.J. Liu, B.L. Xu, J. Wang, and H.Q. Huang, Phys. E 86, 158 (2017).CrossRefGoogle Scholar
  17. 17.
    B.X. Wang, X. Zhai, G.Z. Wang, W.Q. Huang, and L.L. Wang, J. Appl. Phys. 117, 014504 (2015).CrossRefGoogle Scholar
  18. 18.
    X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T.J. Cui, Appl. Phys. Lett. 101, 154102 (2012).CrossRefGoogle Scholar
  19. 19.
    B.X. Wang, IEEE J. Select. Top. Quantum Electron. 23, 4700107 (2017).Google Scholar
  20. 20.
    B. Lin, S. Zhao, X. Da, Y. Fang, J. Ma, W. Li, and Z. Zhu, J. Appl. Phys. 117, 184503 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, Eur. Phys. J. B 89, 14 (2016).CrossRefGoogle Scholar
  22. 22.
    S. Shang, S. Yang, L. Tao, L. Yang, and H. Cao, AIP Adv. 6, 075203 (2016).CrossRefGoogle Scholar
  23. 23.
    P. Rufangura and C. Sabah, J. Alloys Compd. 680, 473 (2016).CrossRefGoogle Scholar
  24. 24.
    J. Tang, Z. Xiao, K. Xu, X. Ma, and Z. Wang, Plasmonics 11, 1393 (2016).CrossRefGoogle Scholar
  25. 25.
    X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, J. Opt. 17, 055101 (2015).CrossRefGoogle Scholar
  26. 26.
    V.A.L. Mol and C.K. Aanandan, J. Phys. Commun. 1, 015003 (2017).CrossRefGoogle Scholar
  27. 27.
    P. Pitchappa, C.P. Ho, P. Kropelnicki, N. Singh, D.L. Kwong, and C.K. Lee, J. Appl. Phys. 104, 201114 (2014).Google Scholar
  28. 28.
    M.K. Hedayati, A.U. Zilohu, T. Strunskus, F. Faupel, and M. Elbahri, Appl. Phys. Lett. 104, 041103 (2014).CrossRefGoogle Scholar
  29. 29.
    Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Prermaratne, Opt. Express 22, 16408 (2014).CrossRefGoogle Scholar
  30. 30.
    G. Isic, B. Vasic, D.C. Zografopoulos, R. Beccherelli, and R. Gajic, Phys. Rev. Appl. 3, 064007 (2014).CrossRefGoogle Scholar
  31. 31.
    P. Pitchappa, C.P. Ho, Y.-S. Lin, P. Kropelnicki, C.-Y. Huang, N. Singh, and C. Lee, Appl. Phys. Lett. 104, 151104 (2014).CrossRefGoogle Scholar
  32. 32.
    D. Xiao and K. Tao, Appl. Phys. Express 8, 102001 (2015).CrossRefGoogle Scholar
  33. 33.
    W. Agarwal, A.K. Behera, and M.K. Meshram, Electron. Lett. 52, 340 (2016).CrossRefGoogle Scholar
  34. 34.
    D.T. Viet, N.T. Hien, P.V. Tuong, N.Q. Minh, P.T. Trang, L.N. Le, Y.P. Lee, and V.D. Lam, Opt. Commun. 322, 209 (2014).CrossRefGoogle Scholar
  35. 35.
    J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, and Y.P. Lee, Opt. Express 21, 9691 (2013).CrossRefGoogle Scholar
  36. 36.
    G. Dayal and S.A. Ramakrishna, J. Opt. 15, 055106 (2013).CrossRefGoogle Scholar
  37. 37.
    H. Luo, X. Hu, Y. Qiu, and P. Zhou, Solid State Commun. 188, 5 (2014).CrossRefGoogle Scholar
  38. 38.
    S. Liu, H. Chen, and T.J. Cui, Appl. Phys. Lett. 106, 151601 (2015).CrossRefGoogle Scholar
  39. 39.
    S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T.J. Cui, J. Appl. Phys. 118, 245304 (2015).CrossRefGoogle Scholar
  40. 40.
    L. Huang, D.R. Chowdhury, S. Ramani, M.T. Reiten, S.N. Luo, A.K. Azad, A.J. Taylor, and H.T. Chen, Appl. Phys. Lett. 101, 101102 (2012).CrossRefGoogle Scholar
  41. 41.
    N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, and H.T. Chen, Science 340, 6138 (2013).CrossRefGoogle Scholar
  42. 42.
    X.Y. Peng, B. Wang, S. Lai, D.H. Zhang, and J.H. Teng, Opt. Express 20, 27756 (2012).CrossRefGoogle Scholar
  43. 43.
    G. Dayal and S.A. Ramakrishna, J. Opt. 16, 094016 (2014).CrossRefGoogle Scholar
  44. 44.
    B.X. Wang, G.Z. Wang, T. Sang, and L.L. Wang, Sci. Rep. 7, 41373 (2017).CrossRefGoogle Scholar
  45. 45.
    G. Dayal and S.A. Ramakrishna, J. Phys. D 48, 035105 (2015).CrossRefGoogle Scholar
  46. 46.
    B.X. Wang, Plasmonics 12, 95 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of ScienceJiangnan UniversityWuxiChina
  2. 2.School of Physics and ElectronicsHunan UniversityChangshaChina

Personalised recommendations