Journal of Electronic Materials

, Volume 48, Issue 5, pp 2895–2901 | Cite as

Photocatalytic Performance of Cubic and Hexagonal Phase CdS Synthesized via Different Cd Sources

  • Xiande Yang
  • Boyou Wang
  • Yu Mu
  • Mingyan ZhengEmail author
  • Yongqian WangEmail author


CdS has been widely used in photocatalysis, by virtue of its sensitivity to visible-light irradiation. But CdS has two crystalline phases, which are not equally well understood. Hence, we synthesized cubic phase and hexagonal phase hierarchical CdS with different Cd sources by the hydrothermal method. These as-prepared CdS samples were characterized by powder x-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), ultraviolet–visible spectrophotometer (UV–Vis), and room temperature photoluminescence (PL). Photocatalytic degradation of methylene blue was evaluated under simulated visible-light irradiation. PXRD results revealed that the CdS samples manifested a cubic phase when the Cd source was CdCl2, but the CdS assumed a mixed hexagonal and cubic phase when the Cd source was Cd(NO3)2. FESEM results indicate that the morphologies of CdS are both flower-like structures. The optical energy band gap of cubic phase CdS is 2.26 eV, but mixed hexagonal and cubic phase CdS is 2.24 eV according to UV–Vis results. PL results show that CdS samples of both phases have a similar emission peak near 560 nm, which is consistent with UV–Vis absorption spectrums. In addition, mixed hexagonal and cubic phase CdS exhibits better photocatalytic activity than cubic phase CdS.


Cd source cubic CdS hexagonal CdS photocatalytic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Startup Foundation for Advanced Talents of China University of Geosciences (No. 009-162301132613), Open Research Topic for Engineering Research Center of Nano-Geomaterials of Ministry of Education of China University of Geosciences (No. NGM2018KF019). The financial support was gratefully appreciated.


  1. 1.
    C.Y. Su, L.C. Wang, W.S. Liu, C.C. Wang, and T.P. Perng, ACS Appl. Mater. Interfaces 10, 33287 (2018).CrossRefGoogle Scholar
  2. 2.
    L. Yuan and Y.J. Xu, Appl. Surf. Sci. 342, 154 (2015).CrossRefGoogle Scholar
  3. 3.
    H.G. Yu, F.Y. Chen, F. Chen, and X.F. Wang, Appl. Surf. Sci. 358, 385 (2015).CrossRefGoogle Scholar
  4. 4.
    H.J. Liang, Q.X. Meng, X.B. Wang, H.C. Zhang, and J.J. Wang, ACS Appl. Mater. Interfaces 10, 14145 (2018).CrossRefGoogle Scholar
  5. 5.
    Y.Q. Wang, Q. Ma, H.X. Jia, and Z.S. Wang, Ceram. Int. 42, 10751 (2016).CrossRefGoogle Scholar
  6. 6.
    Y.Q. Wang, T.T. Jiang, D.W. Meng, D.G. Wang, and M.H. Yu, Appl. Surf. Sci. 317, 414 (2015).CrossRefGoogle Scholar
  7. 7.
    X.D. Yang, Z.S. Wang, X.Z. Lv, Y.Q. Wang, and H.X. Jia, J. Photochem. Photobiol. A 329, 175 (2016).CrossRefGoogle Scholar
  8. 8.
    W.J. Han, L. Ren, L.J. Gong, X. Qi, L.W. Yang, J. Li, X.L. Wei, and J.X. Zhong, ACS Sustain. Chem. Eng. 2, 741 (2014).CrossRefGoogle Scholar
  9. 9.
    W.J. Han, L. Ren, Z. Zhang, X. Qi, Y.D. Liu, Z.Y. Huang, and J.X. Zhong, Ceram. Int. 41, 7471 (2015).CrossRefGoogle Scholar
  10. 10.
    W.J. Han, L. Ren, X. Qi, Y.D. Liu, X.L. Wei, Z.Y. Huang, and J.X. Zhong, Appl. Surf. Sci. 299, 12 (2014).CrossRefGoogle Scholar
  11. 11.
    B.S.M. Al Balushi, F. Al Marzouqi, B. Al Wahaibi, A.T. Kuvarega, S.M.Z. Al Kindy, Y.H. Kim, and R. Selvaraj, Appl. Surf. Sci. 457, 559 (2018).CrossRefGoogle Scholar
  12. 12.
    B. Ren, M. Cao, Q. Zhang, J. Huang, Z. Zhao, X. Jin, C. Li, Y. Shen, and L.J. Wang, J. Alloys Compd. 659, 74 (2016).CrossRefGoogle Scholar
  13. 13.
    F. Vaquero, R.M. Navarro, and J.L.G. Fierro, Appl. Catal. B: Environ. 203, 753 (2017).CrossRefGoogle Scholar
  14. 14.
    M.A. Mahdi, J.J. Hassan, S.J. Kasim, S.S. Ng, and Z. Hassan, Mater. Sci. Semicond. Proc. 26, 87 (2014).CrossRefGoogle Scholar
  15. 15.
    V. Kumar, K. Kumar, H.C. Jeon, T.W. Kang, D.J. Lee, and S. Kumar, J. Phys. Chem. Solids 124, 1 (2019).CrossRefGoogle Scholar
  16. 16.
    H.B. Ren, L. Zhang, X.B. Wan, Y.T. Bi, and Y. Zhang, Thin Solid Films 518, 3700 (2010).CrossRefGoogle Scholar
  17. 17.
    T. Shanmugapriya, R. Vinayakan, K.G. Thomas, and P. Ramamurthy, CrystEngComm 13, 2340 (2011).CrossRefGoogle Scholar
  18. 18.
    D.A. Grynko, A.N. Fedoryak, O.P. Dimitriev, A. Lin, R.B. Laghumavarapu, and D.L. Huffaker, Surf. Coat. Technol. 230, 234 (2013).CrossRefGoogle Scholar
  19. 19.
    G. Murugadoss, J. Lumin. 146, 430 (2014).CrossRefGoogle Scholar
  20. 20.
    P.A.L. Lopes, M.B. Santos, A.J.S. Mascarenhas, and L.A. Silva, Mater. Lett. 136, 111 (2014).CrossRefGoogle Scholar
  21. 21.
    Q.W. An, X.Q. Meng, L. Zhang, and Y.J. Zhao, Mater. Lett. 136, 55 (2014).CrossRefGoogle Scholar
  22. 22.
    J.F. Zhang, S. Wargeh, A.A. Al Ghamdi, and J.G. Yu, Appl. Catal. B: Environ. 192, 101 (2016).CrossRefGoogle Scholar
  23. 23.
    G. Murali, D.A. Reddy, G. Giribabu, and R.P. Vijayalakshmi, Ceram. Int. 40, 11813 (2014).CrossRefGoogle Scholar
  24. 24.
    Y.J. Ma, Y. Liu, Y. Bian, A.Q. Zhu, Y. Yang, and J. Pan, J. Colloid Interface Sci. 518, 140 (2018).CrossRefGoogle Scholar
  25. 25.
    Y.Q. Wang, X.D. Yang, Q. Ma, J.H. Kong, H.X. Jia, Z.S. Wang, and M.H. Yu, Appl. Surf. Sci. 340, 18 (2015).CrossRefGoogle Scholar
  26. 26.
    N. Bao, L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, and C.A. Grimes, J. Phys. Chem. C 111, 17527 (2007).CrossRefGoogle Scholar
  27. 27.
    H.B. Fu, C.S. Pan, and W.Q. Yao, J. Phys. Chem. B 109, 22432 (2005).CrossRefGoogle Scholar
  28. 28.
    G.Q. Xu, B. Liu, S.J. Xu, C.H. Chew, S.J. Chua, and L.M. Gana, J. Phys. Chem. Solids 61, 829 (2000).CrossRefGoogle Scholar
  29. 29.
    Q.T. Pan, K. Huang, S.B. Ni, Q. Wang, F. Yang, and D.Y. He, Mater. Lett. 61, 4733 (2007).Google Scholar
  30. 30.
    S.L. Xiong, X.G. Zhang, and Y.T. Qian, Cryst. Growth Des. 9, 5259 (2009).CrossRefGoogle Scholar
  31. 31.
    Z. Yu, B.S. Yin, F.Y. Qu, and X. Wu, Chem. Eng. J. 258, 203 (2014).CrossRefGoogle Scholar
  32. 32.
    W.S. Chae, J.H. Ko, I.W. Hwang, and Y.R. Kim, Chem. Phys. Lett. 365, 49 (2002).CrossRefGoogle Scholar
  33. 33.
    Y. Lei, W.K. Chim, H.P. Sun, and G. Wilde, Appl. Phys. Lett. 86, 103106 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Faculty of EngineeringChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations