Advertisement

Highly Effective Disinfection of E. coli Using the Nanohybrids Ti1−xNixO2/CNTs

  • Diep Thi Bich Dao
  • Hong Ngoc Phan
  • Dung Duc Dang
  • Hung Manh Nguyen
  • Thang Viet Dao
  • Minh Van Nguyen
  • Minh Ngoc Phan
  • Khang Cao NguyenEmail author
Article

Abstract

The nanohybrids Ti1−xNixO2/CNTs (x = 0; 0.01; 0.03; 0.06; 0.09) were synthesized by hydrolysis. The samples were characterized by high-resolution transmission electron microscopy (HR-TEM), x-ray diffraction (XRD), and optical absorption spectra (UV–Vis). The XRD analysis shows that the Ni-doped TiO2 exists mainly in the form of the anatase phase. The average size of TiO2 nanoparticles attached on the surface of the carbon nanotubes (CNTs) was found to be around 8 nm (based on the results from the XRD and HR-TEM images). The UV–Vis spectra of the Ti1−xNixO2/CNTs reveal not only a redshift due to the Ni-doping, but also an increase in the absorbance in the visible range due to nanohybridization of CNTs. The photocatalytic activity of the samples was tested by antibacterial activity against Escherichia coli. The results show that almost 100% of E. coli was destroyed, indicating a significantly much higher activity than that of pure TiO2.

Keywords

TiO2 CNTs heterostructures photocatalytic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ministry of Education and Training Project No. B2017-SPH-30.

References

  1. 1.
    W.A. Jacoby, P.C. Maness, E.J. Wolfrum, D.M. Blake, and J.A. Fennell, Environ. Sci. Technol. 32, 2650 (1998).Google Scholar
  2. 2.
    J. Fawell and M.J. Nieuwenhuijsen, Brit. Med. Bull. 68, 199 (2003).Google Scholar
  3. 3.
    U. von Gunten, Water Res. 37, 1443 (2003).Google Scholar
  4. 4.
    S. Vilhunen, H. Sarkka, and M. Sillanpaa, Environ. Sci. Pollut. Res. Int. 16, 439 (2009).Google Scholar
  5. 5.
    E. Aieta and J.D. Berg, J. Am. Water Works Assoc. 78, 62 (1986).Google Scholar
  6. 6.
    Y. Xiao, S. Xu, Z. Li, X. An, L. Zhou, Y. Zhang, and F.Q. Shiang, Chin. Sci. Bull. 55, 1345 (2010).Google Scholar
  7. 7.
    P. Muraleedharan, J. Gopal, R.P. George, and H.S. Khatak, Curr. Sci. 84, 197 (2003).Google Scholar
  8. 8.
    Y. Abdollahi, A.H. Abdullah, Z. Zainal, and N.A. Yusof, Int. J. Mol. Sci. 13, 302 (2012).Google Scholar
  9. 9.
    T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song, and S. Suib, Molecules 21, 900 (2016).Google Scholar
  10. 10.
    S.S. Boxi and S. Paria, RSC Adv. 4, 37752 (2014).Google Scholar
  11. 11.
    I. Gehrke, A. Geiser, and A.S. Somborn, Nanotechnol. Sci. Appl. 8, 1 (2015).Google Scholar
  12. 12.
    X. Qu, P.J.J. Alvarez, and Q. Li, Water Res. 47, 3931 (2013).Google Scholar
  13. 13.
    T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, FEMS Microbiol. Lett. 29, 211 (1985).Google Scholar
  14. 14.
    N.C. Khang, N.V. Minh, and I.S. Yang, J. Nanosci. Nanotechnol. 11, 6494 (2011).Google Scholar
  15. 15.
    M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou, and P. Yang, Mater. Lett. 60, 693 (2006).Google Scholar
  16. 16.
    H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, and Y. Yan, Chem. Mater. 16, 846 (2004).Google Scholar
  17. 17.
    J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, and L. Zhang, Appl. Catal. B Environ. 62, 329 (2006).Google Scholar
  18. 18.
    H. Sun, G. Zhou, S. Liu, H.M. Ang, M.O. Tadé, and S. Wang, Chem. Eng. J. 231, 18 (2013).Google Scholar
  19. 19.
    K. Nagaveni, M.S. Hegde, and G. Madras, J. Phys. Chem. B 108, 20204 (2004).Google Scholar
  20. 20.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).Google Scholar
  21. 21.
    Y. Wang, Y. Wang, Y. Meng, H. Ding, Y. Shan, X. Zhao, and X. Tang, J. Phys. Chem. C 112, 6620 (2008).Google Scholar
  22. 22.
    Y. Gai, J. Li, S.S. Li, J.B. Xia, and S.H. Wei, Phys. Rev. Lett. 102, 036402 (2009).Google Scholar
  23. 23.
    F.J. Zhang, M.L. Chen, and W.C. Oh, Korean J. Mater. Res. 18, 583 (2008).Google Scholar
  24. 24.
    Y.G. Go, F.J. Zhang, M.L. Chen, and W.C. Oh, J. Mater. Res. 19, 142 (2009).Google Scholar
  25. 25.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).Google Scholar
  26. 26.
    C.R. Estrellan, C. Salim, and H. Hinode, React. Kinet. Catal. Lett. 98, 187 (2009).Google Scholar
  27. 27.
    Y. Cong, J. Zhang, F. Chen, and M. Anpo, J. Phys. Chem. C 111, 6976 (2007).Google Scholar
  28. 28.
    M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987).Google Scholar
  29. 29.
    W. Choi, A. Termin, and M.R. Hoffmann, Angew. Chem. 106, 1148 (1994).Google Scholar
  30. 30.
    G. Colón, M. Maicu, M.C. Hidalgo, and J.A. Navío, Appl. Catal. B Environ. 67, 41 (2006).Google Scholar
  31. 31.
    H. Tokudome and M. Miyauchi, Chem. Lett. 33, 1108 (2004).Google Scholar
  32. 32.
    Y.M. Lin, Z.Y. Jiang, C.Y. Zhu, X.Y. Hu, X.D. Zhang, and J. Fan, Mater. Chem. Phys. 133, 746 (2012).Google Scholar
  33. 33.
    L.L. Lai, W. Wen, and J.M. Wu, RSC Adv. 6, 25511 (2016).Google Scholar
  34. 34.
    J.Q. Bai, W. Wen, and J.M. Wu, CrystEngComm 18, 1847 (2016).Google Scholar
  35. 35.
    F.H. Abdulrazzak, Int. J. ChemTech Res. 9, 431 (2016).Google Scholar
  36. 36.
    M. Shi, W. Wei, Z. Jiang, H. Han, J. Gao, and J. Xie, RSC Adv. 6, 25255 (2016).Google Scholar
  37. 37.
    E. Hye Kim and H. Chul Choi, Bull. Korean Chem. Soc. 37, 1866 (2016).Google Scholar
  38. 38.
    T. Saito, T. Iwase, J. Horie, and T. Morioka, J. Photochem. Photobiol. B 14, 369 (1992).Google Scholar
  39. 39.
    C. Wei, W.Y. Lin, Z. Zainal, N.E. Williams, K. Zhu, A.P. Kruzic, R.L. Smith, and K. Rajeshwar, Environ. Sci. Technol. 28, 934 (1994).Google Scholar
  40. 40.
    M. Cho, H. Chung, W. Choi, and J. Yoon, Water Res. 38, 1069 (2004).Google Scholar
  41. 41.
    Z. Huang, P.C. Maness, D.M. Blake, E.J. Wolfrum, S.L. Smolinski, and W.A. Jacoby, J. Photochem. Photobiol. A 130, 163 (2000).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Diep Thi Bich Dao
    • 1
  • Hong Ngoc Phan
    • 2
  • Dung Duc Dang
    • 3
  • Hung Manh Nguyen
    • 3
  • Thang Viet Dao
    • 3
  • Minh Van Nguyen
    • 3
  • Minh Ngoc Phan
    • 2
  • Khang Cao Nguyen
    • 4
    • 5
    Email author
  1. 1.Faculty of ChemistryHanoi National University of EducationHanoiVietnam
  2. 2.Centre for High Technology DevelopmentVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Center for Nanoscience and TechnologyHanoi National University of EducationHanoiVietnam
  4. 4.Duy Tan UniversityDanangVietnam
  5. 5.Faculty of PhysicsHanoi National University of EducationHanoiVietnam

Personalised recommendations