Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2653–2659 | Cite as

Highly Effective Disinfection of E. coli Using the Nanohybrids Ti1−xNixO2/CNTs

  • Diep Thi Bich Dao
  • Hong Ngoc Phan
  • Dung Duc Dang
  • Hung Manh Nguyen
  • Thang Viet Dao
  • Minh Van Nguyen
  • Minh Ngoc Phan
  • Khang Cao NguyenEmail author
Article
  • 37 Downloads

Abstract

The nanohybrids Ti1−xNixO2/CNTs (x = 0; 0.01; 0.03; 0.06; 0.09) were synthesized by hydrolysis. The samples were characterized by high-resolution transmission electron microscopy (HR-TEM), x-ray diffraction (XRD), and optical absorption spectra (UV–Vis). The XRD analysis shows that the Ni-doped TiO2 exists mainly in the form of the anatase phase. The average size of TiO2 nanoparticles attached on the surface of the carbon nanotubes (CNTs) was found to be around 8 nm (based on the results from the XRD and HR-TEM images). The UV–Vis spectra of the Ti1−xNixO2/CNTs reveal not only a redshift due to the Ni-doping, but also an increase in the absorbance in the visible range due to nanohybridization of CNTs. The photocatalytic activity of the samples was tested by antibacterial activity against Escherichia coli. The results show that almost 100% of E. coli was destroyed, indicating a significantly much higher activity than that of pure TiO2.

Keywords

TiO2 CNTs heterostructures photocatalytic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ministry of Education and Training Project No. B2017-SPH-30.

References

  1. 1.
    W.A. Jacoby, P.C. Maness, E.J. Wolfrum, D.M. Blake, and J.A. Fennell, Environ. Sci. Technol. 32, 2650 (1998).CrossRefGoogle Scholar
  2. 2.
    J. Fawell and M.J. Nieuwenhuijsen, Brit. Med. Bull. 68, 199 (2003).CrossRefGoogle Scholar
  3. 3.
    U. von Gunten, Water Res. 37, 1443 (2003).CrossRefGoogle Scholar
  4. 4.
    S. Vilhunen, H. Sarkka, and M. Sillanpaa, Environ. Sci. Pollut. Res. Int. 16, 439 (2009).CrossRefGoogle Scholar
  5. 5.
    E. Aieta and J.D. Berg, J. Am. Water Works Assoc. 78, 62 (1986).CrossRefGoogle Scholar
  6. 6.
    Y. Xiao, S. Xu, Z. Li, X. An, L. Zhou, Y. Zhang, and F.Q. Shiang, Chin. Sci. Bull. 55, 1345 (2010).CrossRefGoogle Scholar
  7. 7.
    P. Muraleedharan, J. Gopal, R.P. George, and H.S. Khatak, Curr. Sci. 84, 197 (2003).Google Scholar
  8. 8.
    Y. Abdollahi, A.H. Abdullah, Z. Zainal, and N.A. Yusof, Int. J. Mol. Sci. 13, 302 (2012).CrossRefGoogle Scholar
  9. 9.
    T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song, and S. Suib, Molecules 21, 900 (2016).CrossRefGoogle Scholar
  10. 10.
    S.S. Boxi and S. Paria, RSC Adv. 4, 37752 (2014).CrossRefGoogle Scholar
  11. 11.
    I. Gehrke, A. Geiser, and A.S. Somborn, Nanotechnol. Sci. Appl. 8, 1 (2015).CrossRefGoogle Scholar
  12. 12.
    X. Qu, P.J.J. Alvarez, and Q. Li, Water Res. 47, 3931 (2013).CrossRefGoogle Scholar
  13. 13.
    T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, FEMS Microbiol. Lett. 29, 211 (1985).CrossRefGoogle Scholar
  14. 14.
    N.C. Khang, N.V. Minh, and I.S. Yang, J. Nanosci. Nanotechnol. 11, 6494 (2011).CrossRefGoogle Scholar
  15. 15.
    M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou, and P. Yang, Mater. Lett. 60, 693 (2006).CrossRefGoogle Scholar
  16. 16.
    H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, and Y. Yan, Chem. Mater. 16, 846 (2004).CrossRefGoogle Scholar
  17. 17.
    J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, and L. Zhang, Appl. Catal. B Environ. 62, 329 (2006).CrossRefGoogle Scholar
  18. 18.
    H. Sun, G. Zhou, S. Liu, H.M. Ang, M.O. Tadé, and S. Wang, Chem. Eng. J. 231, 18 (2013).CrossRefGoogle Scholar
  19. 19.
    K. Nagaveni, M.S. Hegde, and G. Madras, J. Phys. Chem. B 108, 20204 (2004).CrossRefGoogle Scholar
  20. 20.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).CrossRefGoogle Scholar
  21. 21.
    Y. Wang, Y. Wang, Y. Meng, H. Ding, Y. Shan, X. Zhao, and X. Tang, J. Phys. Chem. C 112, 6620 (2008).CrossRefGoogle Scholar
  22. 22.
    Y. Gai, J. Li, S.S. Li, J.B. Xia, and S.H. Wei, Phys. Rev. Lett. 102, 036402 (2009).CrossRefGoogle Scholar
  23. 23.
    F.J. Zhang, M.L. Chen, and W.C. Oh, Korean J. Mater. Res. 18, 583 (2008).CrossRefGoogle Scholar
  24. 24.
    Y.G. Go, F.J. Zhang, M.L. Chen, and W.C. Oh, J. Mater. Res. 19, 142 (2009).Google Scholar
  25. 25.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefGoogle Scholar
  26. 26.
    C.R. Estrellan, C. Salim, and H. Hinode, React. Kinet. Catal. Lett. 98, 187 (2009).CrossRefGoogle Scholar
  27. 27.
    Y. Cong, J. Zhang, F. Chen, and M. Anpo, J. Phys. Chem. C 111, 6976 (2007).CrossRefGoogle Scholar
  28. 28.
    M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987).CrossRefGoogle Scholar
  29. 29.
    W. Choi, A. Termin, and M.R. Hoffmann, Angew. Chem. 106, 1148 (1994).CrossRefGoogle Scholar
  30. 30.
    G. Colón, M. Maicu, M.C. Hidalgo, and J.A. Navío, Appl. Catal. B Environ. 67, 41 (2006).CrossRefGoogle Scholar
  31. 31.
    H. Tokudome and M. Miyauchi, Chem. Lett. 33, 1108 (2004).CrossRefGoogle Scholar
  32. 32.
    Y.M. Lin, Z.Y. Jiang, C.Y. Zhu, X.Y. Hu, X.D. Zhang, and J. Fan, Mater. Chem. Phys. 133, 746 (2012).CrossRefGoogle Scholar
  33. 33.
    L.L. Lai, W. Wen, and J.M. Wu, RSC Adv. 6, 25511 (2016).CrossRefGoogle Scholar
  34. 34.
    J.Q. Bai, W. Wen, and J.M. Wu, CrystEngComm 18, 1847 (2016).CrossRefGoogle Scholar
  35. 35.
    F.H. Abdulrazzak, Int. J. ChemTech Res. 9, 431 (2016).Google Scholar
  36. 36.
    M. Shi, W. Wei, Z. Jiang, H. Han, J. Gao, and J. Xie, RSC Adv. 6, 25255 (2016).CrossRefGoogle Scholar
  37. 37.
    E. Hye Kim and H. Chul Choi, Bull. Korean Chem. Soc. 37, 1866 (2016).CrossRefGoogle Scholar
  38. 38.
    T. Saito, T. Iwase, J. Horie, and T. Morioka, J. Photochem. Photobiol. B 14, 369 (1992).CrossRefGoogle Scholar
  39. 39.
    C. Wei, W.Y. Lin, Z. Zainal, N.E. Williams, K. Zhu, A.P. Kruzic, R.L. Smith, and K. Rajeshwar, Environ. Sci. Technol. 28, 934 (1994).CrossRefGoogle Scholar
  40. 40.
    M. Cho, H. Chung, W. Choi, and J. Yoon, Water Res. 38, 1069 (2004).CrossRefGoogle Scholar
  41. 41.
    Z. Huang, P.C. Maness, D.M. Blake, E.J. Wolfrum, S.L. Smolinski, and W.A. Jacoby, J. Photochem. Photobiol. A 130, 163 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Diep Thi Bich Dao
    • 1
  • Hong Ngoc Phan
    • 2
  • Dung Duc Dang
    • 3
  • Hung Manh Nguyen
    • 3
  • Thang Viet Dao
    • 3
  • Minh Van Nguyen
    • 3
  • Minh Ngoc Phan
    • 2
  • Khang Cao Nguyen
    • 4
    • 5
    Email author
  1. 1.Faculty of ChemistryHanoi National University of EducationHanoiVietnam
  2. 2.Centre for High Technology DevelopmentVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Center for Nanoscience and TechnologyHanoi National University of EducationHanoiVietnam
  4. 4.Duy Tan UniversityDanangVietnam
  5. 5.Faculty of PhysicsHanoi National University of EducationHanoiVietnam

Personalised recommendations