Advertisement

Role of Hydrogen Flow Rate on Microstructure of a-Si:H(n) Films: Spectroscopic Ellipsometry Studies

  • Venkanna Kanneboina
  • Pratima AgarwalEmail author
Article
  • 4 Downloads

Abstract

The influence of hydrogen flow rate on the microstructure and optical properties of phosphorous doped hydrogenated amorphous silicon (a-Si:H(n)) films is studied through spectroscopic ellipsometry (SE). A series of a-Si:H(n) films were deposited using radio frequency plasma enhanced chemical vapour deposition (RFPECVD) technique by varying the hydrogen flow rate (HFR) in the range of 30–80 SCCM. The SE measurements showed a shift in peak position of pseudo dielectric function of these films from 3.6 eV (for pure a-Si:H) to 4.1 eV with a shoulder peak at 3.4 eV (nanocrystallites embedded a-Si:H) as the hydrogen flow rate was increased. A systematic increase in crystalline fraction along with a decrease in void fraction was observed as HFR was increased up to 70 SCCM during deposition. The results confirm that hydrogen dilution helps in improving the microstructure of films and favours the formation of strong Si–H bonds. Beyond 70 SCCM of HFR, a large flux of hydrogen resulted in an increase in void fraction and disorder in the films.

Keywords

a-Si:H(n) thin films hydrogen flow rate microstructure spectroscopic ellipsometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Financial support for fabricating the multichamber PECVD system was received from Department of Science and Technology (DST) (Grant No. DST/TM/SERI/2K11/78(G)), India and Defence Research and Development Organization (DRDO) (Grant No. ERIP/ER/0900376/M/01/1297), India. We acknowledge the Central instrument facility (CIF), IIT Guwahati for SE and AFM measurements.

References

  1. 1.
    R.A. Street, Hydrogenated Amorphous Silicon (Cambridge: Cambridge University Press, 1991)Google Scholar
  2. 2.
    A. Matsuda, J. Non Cryst. Solids 338–340, 1 (2004).CrossRefGoogle Scholar
  3. 3.
    H. Tanimoto, H. Arai, H. Mizubayashi, M. Yamanaka, and I. Sakata, J. Appl. Phys. 115, 073503 (2014).CrossRefGoogle Scholar
  4. 4.
    R. Rao, F. Kail, and P.R. i Cabarrocas, J. Mater. Sci. Mater. Electron. 18, 1051 (2007).CrossRefGoogle Scholar
  5. 5.
    P. Gogoi and P. Agarwal, Sol. Energy Mater. Sol. Cells 93, 199 (2009).CrossRefGoogle Scholar
  6. 6.
    L. Hamui, B.M. Monroy, K.H. Kimb, A. López-Suárez, J. Santoyo-Salazar, M. López-López, P.R. i Cabarrocas, and G. Santana, Mater. Sci. Semicond. Process. 41, 390 (2016).CrossRefGoogle Scholar
  7. 7.
    A.R. Zanatta and I. Chambouleyron, Phys. Rev. B 53, 3833 (1996).CrossRefGoogle Scholar
  8. 8.
    Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, Sol. Energy Mater. Sol. Cells 93, 670 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt. 4, 96 (2014).CrossRefGoogle Scholar
  10. 10.
    M.A. Green, Y. Hishikawa, A.W.Y.H. Baillie, E.D. Dunlop, and D.H. Levi, Prog. Photovolt. Res. Appl. 26, 3 (2018).CrossRefGoogle Scholar
  11. 11.
    J. Zhao, A. Wang, and M.A. Green, Sol. Energy Mater. Sol. Cells 65, 429 (2001).CrossRefGoogle Scholar
  12. 12.
    Z. Wang, D. Flototto, and E.J. Mittemeijer, J. Appl. Phys. 121, 095307 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Fujiwara, T. Kaneko, and M. Kondo, Sol. Energy Mater. Sol. Cells 93, 725 (2009).CrossRefGoogle Scholar
  14. 14.
    J. Müllerová, P. Šutta, G. van Elzakker, M. Zeman, and M. Mikula, Appl. Surf. Sci. 254, 3690 (2008).CrossRefGoogle Scholar
  15. 15.
    R. Madaka, V. Kanneboina, and P. Agarwal, J. Eectron. Mater. 47, 4710 (2018).CrossRefGoogle Scholar
  16. 16.
    R. Madaka, V. Kanneboina, and P. Agarwal, J. Mater. Sci. Mater. Electron. 28, 8885 (2017).CrossRefGoogle Scholar
  17. 17.
    A.F. i Morral, P.R. i Cabarrocas, and C. Clerc, Phys. Rev. B 69, 125307 (2004).CrossRefGoogle Scholar
  18. 18.
    K. Saitoh, M. Kondo, M. Fukawa, T. Nishimiya, and A. Matsuda, Appl. Phys. Lett. 71, 3403 (1997).CrossRefGoogle Scholar
  19. 19.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons Ltd., 2007)Google Scholar
  20. 20.
    S. Hamma and P.R. i Cabarrocas, Sol. Energy Mater. Sol. Cells 69, 217 (2001).CrossRefGoogle Scholar
  21. 21.
    L. Korte and M. Schmidt, J. Non Cryst. Solids 354, 2138 (2008).CrossRefGoogle Scholar
  22. 22.
    S.A. Filonovich, M. Ribeiro, A.G. Rolo, and P. Alpuim, Thin Solid Films 516, 576 (2008).CrossRefGoogle Scholar
  23. 23.
    R. Saleh and N.H. Nickel, Sol. Energy Mater. Sol. Cells 90, 3456 (2006).CrossRefGoogle Scholar
  24. 24.
    A.K. Kesarwani, O.S. Panwar, R.K. Tripathi, M.K. Dalai, and S. Chockalingam, Mater. Sci. Semicond. Process. 31, 1 (2015).CrossRefGoogle Scholar
  25. 25.
    A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guérin, Z.C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, and C. Ballif, Appl. Phys. Lett. 99, 123506 (2011).CrossRefGoogle Scholar
  26. 26.
    S. De Wolf, A. Descoeudres, Z.C. Holman, and C. Ballif, Green 2, 7 (2012).Google Scholar
  27. 27.
    V. Kanneboina, R. Madaka, and P. Agarwal, Mater. Today Commun. 15, 18 (2018).CrossRefGoogle Scholar
  28. 28.
    V. Kanneboina, R. Madaka, and P. Agarwal, Sol. Energy 166, 255 (2018).CrossRefGoogle Scholar
  29. 29.
    G.E. Jellison and F.A. Modine, Appl. Phys. Lett. 69, 371 (1996).CrossRefGoogle Scholar
  30. 30.
    D.A.G. Bruggeman, Ann. Phys. 416, 636 (1935).CrossRefGoogle Scholar
  31. 31.
    D.E. Aspnes, Thin Solid Films 89, 249 (1982).CrossRefGoogle Scholar
  32. 32.
    T. Yuguchi, Y. Kanie, N. Matsuki, and H. Fujiwara, J. Appl. Phys. 111, 083509 (2012).CrossRefGoogle Scholar
  33. 33.
    L.R. Dahal, J. Li, J.A. Stoke, Z. Huang, A. Shan, A.S. Ferlauto, C.R. Wronski, R.W. Collins, and N.J. Podraza, Sol. Energy Mater. Sol. Cells 129, 32 (2014).CrossRefGoogle Scholar
  34. 34.
    R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, and C.R. Wronski, Sol. Energy Mater. Sol. Cells 78, 143 (2003).CrossRefGoogle Scholar
  35. 35.
    S. Kageyama, M. Akagawa, and H. Fujiwara, Phys. Rev. B 83, 195205 (2011).CrossRefGoogle Scholar
  36. 36.
    H. Zhang, X. Zhang, G. Hou, C. Wei, J. Sun, X. Geng, S. Xiong, and Y. Zhao, Thin Solid Films 521, 17 (2012).CrossRefGoogle Scholar
  37. 37.
    Y.-H. Chu, C.-C. Lee, I.-C. Chen, S.-Y. Chang, J.-Y. Chang, and T. Li, Thin Solid Films 570, 591 (2014).CrossRefGoogle Scholar
  38. 38.
    A.F. i Morral and P.R. i Cabarrocas, J. Non Cryst. Solids 299–302, 196 (2002).CrossRefGoogle Scholar
  39. 39.
    W. Beyer, Sol. Energy Mater. Sol. Cells 78, 235 (2003).CrossRefGoogle Scholar
  40. 40.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).CrossRefGoogle Scholar
  41. 41.
    P. Gogoi, H.S. Jha, and P. Agarwal, J. Non Cryst. Solids 358, 1990 (2012).CrossRefGoogle Scholar
  42. 42.
    Z. Remes, M. Vanecek, P. Torres, U. Kroll, A.H. Mahan, and R.S. Crandall, J. Non Cryst. Solids 227–230, 876 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of TechnologyGuwahatiIndia
  2. 2.Centre for EnergyIndian Institute of TechnologyGuwahatiIndia

Personalised recommendations