Advertisement

Temperature-Dependent Electrical Characteristics and Extraction of Richardson Constant from Graphitic-C/n-Type 6H-SiC Schottky Diodes

  • Hung Pham
  • Hiep N. Tran
  • Anthony S. Holland
  • Jim G. PartridgeEmail author
Article
  • 16 Downloads

Abstract

Energetically deposited graphitic carbon (C) is known to form high-endurance rectifying contacts to a variety of semiconductors. Graphitic contacts to n-type 6H-SiC have demonstrated current rectification ratios (at ± 1.5 V) up to 1:106. In this article, the current voltage temperature (IVT) characteristics of these devices are examined to reveal more detail on the junction/barrier properties that are critical to performance. Analysis of the IVT characteristics and disparity between barrier heights extracted from the IVT data and CV data show inhomogeneity in the contacts and this has been quantified. Accounting for the inhomogeneity, the homogeneous Richardson constant of the n-type 6H-SiC can be extracted from the IVT data, and this value agrees with the reported theoretical value.

Keywords

Graphenic carbon graphitic carbon electronic materials Schottky contacts 

References

  1. 1.
    J. Biela, M. Schweizer, S. Waffler, B. Wrzecionko, and J.W. Kolar, Mater. Sci. Forum 645–648, 1101 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Dimitrijev, Microelectron. Eng. 83, 123 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Bhatnagar and B.J. Baliga, IEEE Trans. Electron Devices 40, 645 (1993).CrossRefGoogle Scholar
  4. 4.
    J.W. Palmour, J.A. Edmond, H.S. Kong, and C.H. Carter, Phys. B 185, 461 (1993).CrossRefGoogle Scholar
  5. 5.
    S. Hertel, D. Waldmann, J. Jobst, A. Albert, M. Albrecht, S. Reshanov, A. Schöner, M. Krieger, and H.B. Weber, Nat. Commun. 3, 957 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Kracica, E.L.H. Mayes, H.N. Tran, A.S. Holland, D.G. McCulloch, and J.G. Partridge, Carbon 102, 141 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Stelzer and F. Kreupl, in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), pp. 21.7.1–21.7.4.Google Scholar
  8. 8.
    A. Di Bartolomeo, Phys. Rep. 606, 1 (2016).CrossRefGoogle Scholar
  9. 9.
    E.L.H. Mayes, D.G. McCulloch, and J.G. Partridge, Appl. Phys. Lett. 103, 182101 (2013).CrossRefGoogle Scholar
  10. 10.
    W. Lu, W.C. Mitchel, C.A. Thornton, W.E. Collins, G.R. Landis, and S.R. Smith, J. Electrochem. Soc. 150, G177 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Crofton, P.G. McMullin, J.R. Williams, and M.J. Bozack, J. Appl. Phys. 77, 1317 (1995).CrossRefGoogle Scholar
  12. 12.
    T. Seyller, K.V. Emtsev, F. Speck, K.Y. Gao, and L. Ley, Appl. Phys. Lett. 88, 242103 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Tongay, T. Schumann, and A.F. Hebard, Appl. Phys. Lett. 95, 222103 (2009).CrossRefGoogle Scholar
  14. 14.
    S. Huebner, N. Miyakawa, S. Kapser, A. Pahlke, and F. Kreupl, IEEE Trans. Nucl. Sci. 62, 588 (2015).CrossRefGoogle Scholar
  15. 15.
    J.C. Angus, P. Koidl, and S. Domitz, Plasma Deposited Thin Films (Boca Raton: CRC Press, 2018), pp. 89–127.CrossRefGoogle Scholar
  16. 16.
    K. Sarpatwari, O.O. Awadelkarim, M.W. Allen, S.M. Durbin, and S.E. Mohney, Appl. Phys. Lett. 94, 242110 (2009).CrossRefGoogle Scholar
  17. 17.
    D.W.M. Lau, D.G. McCulloch, M.B. Taylor, J.G. Partridge, D.R. McKenzie, N.A. Marks, E.H.T. Teo, and B.K. Tay, Phys. Rev. Lett. 100, 176101 (2008).CrossRefGoogle Scholar
  18. 18.
    D.W.M. Lau, J.G. Partridge, M.B. Taylor, D.G. McCulloch, J. Wasyluk, T.S. Perova, and D.R. McKenzie, J. Appl. Phys. 105, 084302 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Moafi, D.W.M. Lau, A.Z. Sadek, J.G. Partridge, D.R. McKenzie, and D.G. McCulloch, J. Appl. Phys. 109, 073309 (2011).CrossRefGoogle Scholar
  20. 20.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley, 2006).CrossRefGoogle Scholar
  21. 21.
    T. Teraji, S. Hara, H. Okushi, and K. Kajimura, Appl. Phys. Lett. 71, 689 (1997).CrossRefGoogle Scholar
  22. 22.
    W.P. Kang, J.L. Davidson, Y. Gurbuz, and D.V. Kerns, J. Appl. Phys. 78, 1101 (1995).CrossRefGoogle Scholar
  23. 23.
    J.H. Werner and H.H. Güttler, J. Appl. Phys. 73, 1315 (1993).CrossRefGoogle Scholar
  24. 24.
    J.P. Sullivan, R.T. Tung, M.R. Pinto, and W.R. Graham, J. Appl. Phys. 70, 7403 (1991).CrossRefGoogle Scholar
  25. 25.
    R.T. Tung, Phys. Rev. B 45, 13509 (1992).CrossRefGoogle Scholar
  26. 26.
    M.M. Solovan, N.M. Gavaleshko, V.V. Brus, A.I. Mostovyi, P.D. Maryanchuk, and E. Tresso, Semicond. Sci. Technol. 31, 105006 (2016).CrossRefGoogle Scholar
  27. 27.
    M.N. Solovan, G.O. Andrushchak, A.I. Mostovyi, T.T. Kovaliuk, V.V. Brus, and P.D. Maryanchuk, Semiconductors 52, 236 (2018).CrossRefGoogle Scholar
  28. 28.
    J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).CrossRefGoogle Scholar
  29. 29.
    H.-D. Lee, IEEE Trans. Electron Devices 47, 762 (2000).CrossRefGoogle Scholar
  30. 30.
    K.P. Schoen, J.M. Woodall, J.A. Cooper, and M.R. Melloch, IEEE Trans. Electron Devices 45, 1595 (1998).CrossRefGoogle Scholar
  31. 31.
    R. Zuleeg and R.S. Muller, Solid State Electron. 7, 575 (1964).CrossRefGoogle Scholar
  32. 32.
    F.A. Padovani, Solid State Electron. 11, 193 (1968).CrossRefGoogle Scholar
  33. 33.
    Ö.F. Yüksel, M. Kuş, N. şimşir, H. şafak, M. şahin, and E. Yenel, J. Appl. Phys. 110, 024507 (2011).CrossRefGoogle Scholar
  34. 34.
    K.H. Yoo, K.S. Kang, Y. Chen, K.J. Han, and J. Kim, Appl. Phys. Lett. 93, 192113 (2008).CrossRefGoogle Scholar
  35. 35.
    K.J. Han, K.S. Kang, Y. Chen, K.H. Yoo, and K. Jaehwan, J. Phys. D Appl. Phys. 42, 125110 (2009).CrossRefGoogle Scholar
  36. 36.
    J.M. Beebe, B. Kim, J.W. Gadzuk, C.D. Frisbie, and J.G. Kushmerick, Phys. Rev. Lett. 97, 026801 (2006).CrossRefGoogle Scholar
  37. 37.
    L. Zheng, R.P. Joshi, and C. Fazi, J. Appl. Phys. 85, 3701 (1999).CrossRefGoogle Scholar
  38. 38.
    F. Roccaforte, F.L. Via, V. Raineri, R. Pierobon, and E. Zanoni, J. Appl. Phys. 93, 9137 (2003).CrossRefGoogle Scholar
  39. 39.
    A.F. Hamida, Z. Ouennoughi, A. Sellai, R. Weiss, and H. Ryssel, Semicond. Sci. Technol. 23, 045005 (2008).CrossRefGoogle Scholar
  40. 40.
    M. Bhatnagar, B.J. Baliga, H.R. Kirk, and G.A. Rozgonyi, IEEE Trans. Electron Devices 43, 150 (1996).CrossRefGoogle Scholar
  41. 41.
    C. Raynaud, K. Isoird, M. Lazar, C.M. Johnson, and N. Wright, J. Appl. Phys. 91, 9841 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.School of Science and TechnologyRMIT UniversityHo Chi Minh CityVietnam
  3. 3.School of ScienceRMIT UniversityMelbourneAustralia

Personalised recommendations