Journal of Electronic Materials

, Volume 48, Issue 5, pp 2962–2970 | Cite as

Predictive Simulations for Tuning Electronic and Optical Properties of SubPc Derivatives

  • Michael J. Waters
  • Daniel Hashemi
  • Guangsha Shi
  • Emmanouil Kioupakis
  • John KiefferEmail author


Boron subphthalocyanine chloride is an electron donor material used in small-molecule organic photovoltaics with an unusually large molecular dipole moment. Using first-principles calculations, we investigate how to control the electronic and optical properties of boron subphthalocyanine chloride by substituting the boron and chlorine atoms with other trivalent and halogen atoms and thereby modifying the molecular dipole moment. Gas-phase molecular structures and properties are predicted using hybrid functionals. Using positions and orientations of the known compounds as the starting coordinates for these molecules, stable crystalline structures are derived following a procedure that involves perturbation and accurate total energy minimization. Electronic structure and photonic properties of the predicted crystals are computed using the GW method and the Bethe–Salpeter equation, respectively. Finally, a simple transport model is used to quantitatively demonstrate the effects of the strength and orientation of molecular dipole moments at interfaces on device performance.


Density functional theory molecular dipole organic photovoltaics organic molecular crystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000957. In addition, the U.S. National Science Foundation supported M.J. Waters through Award No. 0902629, G. Shi and E. Kioupakis through the CAREER Award No. DMR-1254314, as well as D. Hashemi and J. Kieffer through Award No. DMR-1435965.


  1. 1.
    N.S. Lewis, Science 315, 798 (2007).CrossRefGoogle Scholar
  2. 2.
    K.L. Mutolo, E.I. Mayo, B.P. Rand, S.R. Forrest, and M.E. Thompson, J. Am. Chem. Soc. 128, 8108 (2006).CrossRefGoogle Scholar
  3. 3.
    A.E. Jailaubekov, A.P. Willard, J.R. Tritsch, W.-L. Chan, N. Sai, R. Gearba, L.G. Kaake, K.J. Williams, K. Leung, P.J. Rossky, and X.-Y. Zhu, Nat. Mater. 12, 66 (2013).CrossRefGoogle Scholar
  4. 4.
    C.G. Claessens, D. González-Rodríguez, and T. Torres, Chem. Rev. 102, 835 (2002).CrossRefGoogle Scholar
  5. 5.
    M.V. Fulford, D. Jaidka, A.S. Paton, G.E. Morse, E.R.L. Brisson, A.J. Lough, and T.P. Bender, J. Chem. Eng. Data 57, 2756 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Torres, Angew. Chem. Int. Ed. 45, 2834 (2006).CrossRefGoogle Scholar
  7. 7.
    G.E. Morse and T.P. Bender, ACS Appl. Mater. Interfaces 4, 5055 (2012).CrossRefGoogle Scholar
  8. 8.
    M.A. Diaz-Garcia, F. Agullo-Lopez, A. Sastre, T. Torres, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, 77 (1996).Google Scholar
  9. 9.
    H. Kietaibl, Monatsh. Chem. 105, 405 (1974).CrossRefGoogle Scholar
  10. 10.
    B.P. Rand, D.P. Burk, and S.R. Forrest, Phys. Rev. B 75, 115327 (2007).CrossRefGoogle Scholar
  11. 11.
    I.H. Campbell, S. Rubin, T.A. Zawodzinski, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Barashkov, and J.P. Ferraris, Phys. Rev. B 54, R14321 (1996).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012).CrossRefGoogle Scholar
  13. 13.
    A.R. Oganov and C.W. Glass, J. Chem. Phys. 124, 244704 (2006).CrossRefGoogle Scholar
  14. 14.
    L.A.A. Pettersson, L.S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).CrossRefGoogle Scholar
  15. 15.
    M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, J. Cheminform. 4, 1 (2012).CrossRefGoogle Scholar
  16. 16.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  17. 17.
    S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
  18. 18.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  19. 19.
    G.A. Petersson and M.A. Al-Laham, J. Chem. Phys. 94, 6081 (1991).CrossRefGoogle Scholar
  20. 20.
    C. Sosa, J. Andzelm, B.C. Elkin, E. Wimmer, K.D. Dobbs, and D.A. Dixon, J. Phys. Chem. 96, 6630 (1992).CrossRefGoogle Scholar
  21. 21.
    N. Godbout, D.R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. 70, 560 (1992).CrossRefGoogle Scholar
  22. 22.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  24. 24.
    J. Klimeš, D.R. Bowler, and A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Klimeš, D.R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).CrossRefGoogle Scholar
  26. 26.
    N. Kosugi, Theor. Chim. Acta 72, 149 (1987).CrossRefGoogle Scholar
  27. 27.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010).CrossRefGoogle Scholar
  28. 28.
    M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).CrossRefGoogle Scholar
  29. 29.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).CrossRefGoogle Scholar
  30. 30.
    O.D. Gordan, M. Friedrich, and D.R.T. Zahn, Org. Electron. 5, 291 (2004).CrossRefGoogle Scholar
  31. 31.
    M.K. Debe, J. Vac. Sci. Technol. A 10, 2816 (1992).CrossRefGoogle Scholar
  32. 32.
    P. Heremans, D. Cheyns, and B.P. Rand, Acc. Chem. Res. 42, 1740 (2009).CrossRefGoogle Scholar
  33. 33.
    S.E. Morris, D. Bilby, M.E. Sykes, H. Hashemi, M.J. Waters, J. Kieffer, J. Kim, and M. Shtein, Org. Electron. 15, 3660 (2014).CrossRefGoogle Scholar
  34. 34.
    H.H.P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, Adv. Funct. Mater. 17, 2653 (2007).CrossRefGoogle Scholar
  35. 35.
    N.C. Giebink, B.E. Lassiter, G.P. Wiederrecht, M.R. Wasielewski, and S.R. Forrest, Phys. Rev. B 82, 155306 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations