Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2745–2753 | Cite as

Synthesis of Silver Flakes and Their Application as Conductive Filler for Low-Curing-Temperature Silver Pastes

  • Haijiao Zhan
  • Jiayu GuoEmail author
  • Jiali Shen
  • Xiaorong Wang
  • Zhonghua Fan
  • Bing Guo
  • Wei Liu
  • Hangyan Shen
Article
  • 103 Downloads

Abstract

Silver microparticles have inspired much research interest due to their enhanced properties for use in optical, electric, catalytic, and magnetic applications. One such use is as electrically conductive filler for printed electronics. A manufacturing approach has been developed to prepare low-curing-temperature silver pastes. Firstly, silver flakes were synthesized directly by a one-step aqueous-phase reduction reaction, using silver nitrate as silver salt precursor and iron(II) sulfate heptahydrate as reducing agent. Various silver flake samples were synthesized by controlling experimental parameters such as the reaction temperature, surfactant concentration, and reducing agent concentration. The obtained silver powders were characterized by x-ray diffraction analysis, scanning electron microscopy, and dynamic light scattering measurements. The results revealed that the morphology of the silver powders was a plate-like structure with diameter of 1 μm to 1.5 μm and thickness of 30 nm. The prepared silver flakes were then used directly without ball milling to prepare low-curing-temperature silver pastes. The bulk resistivity of a line screen-printed using silver paste containing 48 wt.% (34 ± 5 vol.%) silver flakes and cured at 140°C for 30 min in air was about (1.773 ± 0.118) × 10−6 Ω m. More importantly, the prepared screen-printed patterns exhibited excellent durability in terms of peel strength and folding endurance.

Keywords

Silver flakes printable electronics solution-phase chemical reduction method screen printing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is partially supported by the Natural Science Foundation of Zhejiang (LY16F050005) and the Major Research and Development Project of Zhejiang Province (2017C01SA170345).

References

  1. 1.
    M.K. Sharma, D. Qi, R.D. Buchner, W.J. Scharmach, V. Papavassiliou, and M.T. Swihart, ACS Appl. Mater. Interfaces 6, 13542 (2014).CrossRefGoogle Scholar
  2. 2.
    J. Wu, J. Zang, A.R. Rathmell, X. Zhao, and B.J. Wiley, Nano Lett. 13, 2381 (2013).CrossRefGoogle Scholar
  3. 3.
    R. Liu, J. Guo, G. Ma, P. Jiang, D. Zhang, D. Li, L. Chen, Y. Guo, and G. Ge, ACS Appl. Mater. Interfaces 8, 16833 (2016).CrossRefGoogle Scholar
  4. 4.
    C.M. Andolina, A.C. Dewar, A.M. Smith, L.E. Marbella, M.J. Hartmann, and J.E. Millstone, J. Am. Chem. Soc. 135, 5266 (2013).CrossRefGoogle Scholar
  5. 5.
    M. Li, Y. Xiao, Z. Zhang, and J. Yu, ACS Appl. Mater. Interfaces 7, 9157 (2015).CrossRefGoogle Scholar
  6. 6.
    M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R.S. Varma, Chem. Rev. 116, 3722 (2016).CrossRefGoogle Scholar
  7. 7.
    K.Y. Shin, J.S. Lee, J.Y. Hong, and J. Jang, Chem. Commun. 50, 3093 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Shen, H. Zhan, J. Guo, W. Liu, B. Guo, and H. Shen, J. Nanosci. Nanotechnol. 18, 5054 (2018).CrossRefGoogle Scholar
  9. 9.
    F. Cui, Y. Yu, L. Dou, J. Sun, Q. Yang, C. Schidknecht, K. Schierle-Arndt, and P. Yang, Nano Lett. 15, 7610 (2015).CrossRefGoogle Scholar
  10. 10.
    R. Li, A. Hu, D. Bridges, T. Zhang, K.D. Oakes, R. Peng, U. Tumuluri, Z. Wu, and Z. Feng, Nanoscale 7, 7368 (2015).CrossRefGoogle Scholar
  11. 11.
    G. Saada, M. Layani, A. Chernevously, and S. Magdassi, Adv. Mater. Technol. 2, 1600289 (2017).CrossRefGoogle Scholar
  12. 12.
    H. Ren, Y. Guo, S. Huang, K. Zhang, M.M.F. Yuen, X. Fu, S. Yu, R. Sun, and C. Wong, ACS Appl. Mater. Interfaces 7, 13685 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, and S. Magdassi, ACS Nano 5, 3354 (2011).CrossRefGoogle Scholar
  14. 14.
    N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Itoh, T. Yokota, D. Hashizume, and T. Someya, Nat. Mater. 16, 834 (2017).CrossRefGoogle Scholar
  15. 15.
    B.G. Park, K.H. Jung, and S.B. Jung, J. Alloys Compd. 699, 1186 (2017).CrossRefGoogle Scholar
  16. 16.
    A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, and J.A. Lewis, Adv. Mater. 23, 3426 (2011).CrossRefGoogle Scholar
  17. 17.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).CrossRefGoogle Scholar
  18. 18.
    Y. Hao, J. Song, F. Yang, Y. Hao, Q. Sun, J. Guo, Y. Cui, H. Wang, and F. Zhu, J. Mater. Chem. C 3, 1082 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. Mao, J. Guo, C. Hu, H. Yang, Y. Yang, and S. Chen, RSC Adv. 6, 80905 (2016).CrossRefGoogle Scholar
  20. 20.
    G. Soliveri, S. Ardizzone, S. Yuksel, D. Cialla-May, J. Popp, U.S. Schubert, and S. Hoeppener, J. Phys. Chem. C 120, 1237 (2016).CrossRefGoogle Scholar
  21. 21.
    M. Nakano, T. Fujiwara, and N. Koga, J. Phys. Chem. C 120, 8841 (2016).CrossRefGoogle Scholar
  22. 22.
    P. Barton, S. Mukherjee, J. Prabha, B.W. Boudouris, L. Pan, and X. Xu, Nanotechnology 28, 505302 (2017).CrossRefGoogle Scholar
  23. 23.
    K.S. Tan and K.Y. Cheong, J. Nanopart. Res. 15, 1537 (2013).CrossRefGoogle Scholar
  24. 24.
    X. Guo, D. Deng, Q. Tian, and C. Jiao, Adv. Powder Technol. 25, 865 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Fan, Y. Ren, Y. Fang, and M. Wu, Micro Nano Lett. 9, 726 (2014).CrossRefGoogle Scholar
  26. 26.
    T. Darmanin, P. Nativo, D. Gilliland, G. Ceccone, C. Pascual, B.D. Berardis, F. Guittard, and F. Rossi, Colloids Surf. A 395, 145 (2012).CrossRefGoogle Scholar
  27. 27.
    J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, L. Liu, and Y.N. Zhou, J. Phys: Conf. Ser. 379, 012024 (2012).Google Scholar
  28. 28.
    H.Y. Ahn, J.R. Cha, and M.S. Gong, Mater. Chem. Phys. 153, 390 (2015).CrossRefGoogle Scholar
  29. 29.
    J. Du, B. Han, A.Z. Liu, Y. Liu, and D.J. Kang, Cryst. Growth Des. 7, 900 (2007).CrossRefGoogle Scholar
  30. 30.
    A.D. Valentine, T.A. Busbee, J.W. Boley, J.R. Raney, A. Chortos, A. Kotikian, J.D. Berrigan, M.F. Durstock, and J.A. Lewis, Adv. Mater. 29, 1703817 (2017).CrossRefGoogle Scholar
  31. 31.
    K.S. Bhat, R. Ahmad, Y. Wang, and Y.B. Hahn, J. Mater. Chem. C 4, 8522 (2016).CrossRefGoogle Scholar
  32. 32.
    Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie, and Z. Sun, RSC Adv. 7, 34041 (2017).CrossRefGoogle Scholar
  33. 33.
    H. Jiang, K. Moon, Y. Li, and C.P. Wong, Chem. Mater. 18, 2969 (2006).CrossRefGoogle Scholar
  34. 34.
    I.E. Stewart, M.J. Kim, and B.J. Wiley, ACS Appl. Mater. Interfaces 9, 1870 (2017).CrossRefGoogle Scholar
  35. 35.
    J. Li and J.K. Kim, Compos. Sci. Technol. 67, 2114 (2007).CrossRefGoogle Scholar
  36. 36.
    B. Feng, X. Gu, X. Zhao, Y. Zhang, T. Zhang, and J. Shi, J. Mater. Sci.: Mater. Electron. 28, 7686 (2017).Google Scholar
  37. 37.
    W. Li, D. Hu, L. Li, C. Li, J. Jiu, C. Chen, T. Ishina, T. Sugahara, and K. Suganuma, ACS Appl. Mater. Interfaces 9, 24711 (2017).CrossRefGoogle Scholar
  38. 38.
    S. Guo, W. Fang, Y. Li, Y. Yang, C. Wang, X. Meng, Y. Chao, and H. Yang, J. Mater. Sci.: Mater. Electron. 28, 16267 (2017).Google Scholar
  39. 39.
    H. Zhang, W. Li, Y. Gao, H. Zhang, J. Jiu, and K. Suganuma, J. Electron. Mater. 46, 5201 (2017).CrossRefGoogle Scholar
  40. 40.
    J.M. Lin, W.N. Chen, C.Y. Lin, C.F. Lin, and J.C. Chang, in ICEP Conference Proceedings (2016), pp. 615–618.Google Scholar
  41. 41.
    J. Wang, Z. Chen, Y. Hu, X. Jiang, D. Chen, and W. Zhang, J. Mater. Chem. C 1, 230 (2013).CrossRefGoogle Scholar
  42. 42.
    A. Zhai, X. Cai, and B. Du, Trans. Nonferrous Met. Soc. China 24, 1452 (2014).CrossRefGoogle Scholar
  43. 43.
    S.M. EI-Sawy, I.M. Morsi, and F.A. Abdel-Mohdy, Pigm. Resin Technol. 12, 11 (1983).CrossRefGoogle Scholar
  44. 44.
    I.S. Shaplygin and V.K. Kurnyavko, Powder Metall. Met. Ceram. 12, 517 (1973).CrossRefGoogle Scholar
  45. 45.
    S. Tang, X. Meng, C. Wang, and Z. Cao, Mater. Chem. Phys. 114, 842 (2009).CrossRefGoogle Scholar
  46. 46.
    E. Shardlow, M. Mold, and C. Exley, Front. Chem. 4, 48 (2016).Google Scholar
  47. 47.
    K. Nymeijer, T. Visser, W. Brilman, and M. Wessling, Ind. Eng. Chem. Res. 43, 2627 (2004).CrossRefGoogle Scholar
  48. 48.
    R. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and J.G. Zheng, Science 294, 1901 (2001).CrossRefGoogle Scholar
  49. 49.
    Y. Wang and J. Fang, Angew. Chem. Int. Ed. 50, 992 (2011).CrossRefGoogle Scholar
  50. 50.
    ASTM D 3359-02. Standard Test Methods for Measuring Adhesion by Tape Test. ASTM Standards, West Conshohocken, PA, (2002).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Haijiao Zhan
    • 1
  • Jiayu Guo
    • 1
    Email author
  • Jiali Shen
    • 1
  • Xiaorong Wang
    • 2
  • Zhonghua Fan
    • 2
  • Bing Guo
    • 1
  • Wei Liu
    • 1
  • Hangyan Shen
    • 1
  1. 1.College of Materials Science and EngineeringChina Jiliang UniversityHangzhouPeople’s Republic of China
  2. 2.Hangzhou Huaguang Advanced Welding Materials Co., LTDHangzhouPeople’s Republic of China

Personalised recommendations