Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2737–2744 | Cite as

Experimental Research of Electrical Output Characteristics of Stacked PZT-5H Under High-Overload Conditions

  • Ruizhi Wang
  • Enling TangEmail author
  • Guolai Yang
  • Yafei Han
  • Xiaochu Lin
  • Yue Li
Article
  • 8 Downloads

Abstract

Stacked piezoelectric ceramics (PZT-5H) are often used as sensors and pulsed power sources in moving objects. They will be subjected to a larger overload force when the moving objects collide with the target. In order to study the influence of the connection mode (parallel/series) of ceramic chips on the electrical output characteristics of stacked PZT-5H during overload, many experiments were performed using a nylon projectile to impact the stacked piezoelectric ceramic with different impact velocities by using a one-stage light gas gun as the loading device. The influence of a full bridge rectifier circuit on electrical output characteristics of the stacked PZT-5H was analyzed.

Keywords

Strong shock stacked piezoelectric ceramic high-overload 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11472178) and the Open Foundation of the State Key Laboratory of Explosion Science and technology, Beijing Institute of Technology (Grant No. KFJJ2018- 04M).

References

  1. 1.
    S.Z. Li, An Introduction to Fuze (Beijing: Beijing Institute of Technology Press, 2017), pp. 5–6.Google Scholar
  2. 2.
    R.P. Oberlin, U.S. Patent 6198205 (2001).Google Scholar
  3. 3.
    C. Keawboonchuay and T.G. Engel, IEEE Trans. Plasma Sci. 30, 679 (2002).CrossRefGoogle Scholar
  4. 4.
    F.P. Zhang, Y.S. Liu, Q.H. Xie, G.M. Liu, and H.L. He, J. Appl. Phys. 117, 134104 (2015).CrossRefGoogle Scholar
  5. 5.
    H.C. Nie, J. Yang, X.F. Chen, F.P. Zhang, Y. Yu, G.S. Wang, Y.S. Liu, H.L. He, and X.L. Dong, Curr. Appl. Phys. 17, 448 (2017).CrossRefGoogle Scholar
  6. 6.
    A. Oveisi, M. Gudarzi, and S.M. Hasheminejad, Shock Vib. 2014, 625 (2014).Google Scholar
  7. 7.
    M. Khorsand, Proc. Inst. Mech. Eng. Part C J. Mech. 228, 632 (2014).CrossRefGoogle Scholar
  8. 8.
    A.F. Mel’kanovich and S.I. Konovalov, Russ. J. Nondestruct.+ 50, 14 (2014).CrossRefGoogle Scholar
  9. 9.
    H. Chen, J. Ballist. 15, 82 (2003).Google Scholar
  10. 10.
    Y. Li, The Principle of Fuze Piezoelectric Power Supply and Experimental Investigations (Nanjing: Nanjing University of Science and Technology, 2006).Google Scholar
  11. 11.
    H.P.A. Ali, I. Radchenko, J. Zhao, L. Qing, and A.S. Budiman, J. Mater. Des. Appl. 0, 1 (2017).Google Scholar
  12. 12.
    C.Y. Khoo, H. Liu, W. Sasangka, R.I. Made, N. Tamura, M. Kunz, A.S. Budiman, C.V. Thompson, and C.L. Gan, J. Mater. Sci. 51, 1864–1872 (2016).CrossRefGoogle Scholar
  13. 13.
    I. Radchenko, S.K. Tippabhotla, N. Tamura, and A.S. Budiman, J. Electron. Mater. 45, 6222 (2016).CrossRefGoogle Scholar
  14. 14.
    N. Tamura, A.A. MacDowell, R. Spolenak, B.C. Valek, J.C. Bravman, W.L. Brown, R.S. Celestre, H.A. Padmore, B.W. Batterman, and J.R. Patel, J. Synchrotron Radiat. 10, 137 (2003).CrossRefGoogle Scholar
  15. 15.
    T. Jiang, C. Wu, L. Spinella, J. Im, N. Tamura, M. Kunz, H. Son, B.G. Kim, R. Huang, and P.S. Ho, Appl. Phys. Lett. 103, 211906 (2013).CrossRefGoogle Scholar
  16. 16.
    E. Tang, Y. Li, R. Wang, Y. Han, L. He, S. Liu, M. Wang, S. Xiang, and Z. Li, IEEE Trans. Plasma Sci. 46, 415 (2018).CrossRefGoogle Scholar
  17. 17.
    S. Han and C.S. Huh, IEEE Trans. Plasma Sci. 44, 1429 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Equipment EngineeringShenyang Ligong UniversityShenyangChina

Personalised recommendations