Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2955–2961 | Cite as

Dispersion Relation and General Charge-Transport Model for Organic Semiconductors

  • Hao Jiang
  • Jiu-Xun Sun
  • Hong-Chun YangEmail author
Article
  • 18 Downloads

Abstract

Although organic semiconductors have been widely applied in many fields, their charge-transport mechanism has not been definitively confirmed. A dispersion relation is proposed herein for organic semiconductors, and the corresponding density of states (DOS) derived. The derived DOS can model experimental data for typical materials. The dispersion relation is combined with a general transport model based on the Boltzmann transport equation and considering the transport edge, then main transport properties can be evaluated. The numerical results for mobility versus carrier density and Seebeck coefficient versus conductivity are in good agreement with experimental data.

Keywords

Boltzmann transport equation dispersion relation density of states mobility Seebeck coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the Science and Technology on Electronic Information Control Laboratory under Grant No. JS17080706740, the National Natural Science Foundation of China under Grant No. 31470822, and the Science and Technology Foundation of the State Key Laboratory for Shock Wave and Detonation Physics under Grant No. 9140C670103120C6702.

References

  1. 1.
    Y.R. Sun, N.C. Giebink, H.S. Kanno, B.W. Ma, M.E. Thompson, and S.R. Forrest, Nature 440, 908 (2006).CrossRefGoogle Scholar
  2. 2.
    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).CrossRefGoogle Scholar
  3. 3.
    M.A. Khan and J.X. Sun, RSC Adv. 5, 18720 (2015).CrossRefGoogle Scholar
  4. 4.
    O. Marinov and M.J. Deen, Org. Electron. 14, 295 (2013).CrossRefGoogle Scholar
  5. 5.
    R.D. Pietro, D. Venkateshvaran, A. Klug, E.J.W. List-Kratochvil, A. Facchetti, H. Sirringhaus, and D. Neher, Appl. Phys. Lett. 104, 193501 (2014).CrossRefGoogle Scholar
  6. 6.
    S.H. Park, A. Roy, S. Beaupré, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, and A.J. Heeger, Nat. Photonics 3, 297 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Kuik, L.J.A. Koster, G.A.H. Wetzelaer, and P.W.M. Blom, Phys. Rev. Lett. 107, 256805 (2011).CrossRefGoogle Scholar
  8. 8.
    L. Sun, J.X. Sun, Ch.H. Xiong, and X.H. Shi, Sol. Energy 135, 308 (2016).CrossRefGoogle Scholar
  9. 9.
    O. Knopfmacher, M.L. Hammock, A.L. Appleton, G. Schwartz, J.G. Mei, T. Lei, J. Pei, and ZhN Bao, Nat. Commun. 5, 2954 (2014).CrossRefGoogle Scholar
  10. 10.
    T. Minamiki, T. Minami, R. Kurita, Sh. Wakida, K. Fukuda, D. Kumaki, and ShZ Tokito, Appl. Phys. Lett. 104, 243703 (2014).CrossRefGoogle Scholar
  11. 11.
    O. Bubnova, Z.U. Khan, H. Wang, S. Braun, D.R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y.H. Geerts, S. Desbief, D.W. Breiby, J.W. Andreasen, R. Lazzaroni, W.M. Chen, I. Zozoulenko, M. Fahlman, P.J. Murphy, M. Berggren, and X. Crispin, Nat. Mater. 13, 190–194 (2014).CrossRefGoogle Scholar
  12. 12.
    D. Mendels and N. Tessler, J. Phys. Chem. Lett. 5, 3247 (2014).CrossRefGoogle Scholar
  13. 13.
    S.D.M. Kang and G. Jefrey Snyder, Nat. Mater. 16, 252 (2017).CrossRefGoogle Scholar
  14. 14.
    D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A.J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus, Nature 515, 384 (2014).CrossRefGoogle Scholar
  15. 15.
    K. Kang, S. Watanabe, K. Broch, A. Sepe, A. Brown, I. Nasrallah, M. Nikolka, Zh.P. Fei, M. Heeney, D. Matsumoto, K. Marumoto, H. Tanaka, Sh-I Kuroda, and H. Sirringhaus, Nat. Mater. 15, 896 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Oehzelt, N. Koch, and G. Heimel, Nat. Commun. 5, 4174 (2014).CrossRefGoogle Scholar
  17. 17.
    J.O. Oelerich, D. Huemmer, and S.D. Baranovskii, Phys. Rev. Lett. 108, 226403 (2012).CrossRefGoogle Scholar
  18. 18.
    F. Torricelli, Zs.M. Kovács-Vajna, and L. Colalongo, Org. Electron. 10, 1037 (2009).CrossRefGoogle Scholar
  19. 19.
    X.H. Shi, J.X. Sun, Ch.H. Xiong, and L. Sun, Org. Electron. 30, 60 (2016).CrossRefGoogle Scholar
  20. 20.
    X.H. Shi, J.X. Sun, and Ch.H. Xiong, Org. Electron. 35, 65 (2016).CrossRefGoogle Scholar
  21. 21.
    I.N. Hulea, H.B. Brom, A. Houtepen, J.D. Vanmaekelbergh, J.J. Kelly, and E.A. Meulenkamp, Phys. Rev. Lett. 93, 166601 (2004).CrossRefGoogle Scholar
  22. 22.
    D.V. Lang, X. Chi, T. Siegrist, A.M. Sergent, and A.P. Ramirez, Phys. Rev. Lett. 93, 086802 (2004).CrossRefGoogle Scholar
  23. 23.
    O. Tal, Y. Rosenwaks, Y. Preezant, N. Tessler, C.K. Chan, and A. Kahn, Phys. Rev. Lett. 95, 256405 (2005).CrossRefGoogle Scholar
  24. 24.
    W.S.C. Roelofs, S.G.J. Mathijssen, R.A.J. Janssen, D.M. de Leeuw, and M. Kemerink, Phys. Rev. B 85, 085202 (2012).CrossRefGoogle Scholar
  25. 25.
    B.R. Nag, Electron Transport in Compound Semiconductors (New York: Springer, 1980), pp. 171–229.Google Scholar
  26. 26.
    G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).CrossRefGoogle Scholar
  27. 27.
    D.R. Penn and M.D. Stiles, Phys. Rev. B 59, 13338 (1999).CrossRefGoogle Scholar
  28. 28.
    S. Ihnatsenka, X. Crispin, and I.V. Zozoulenko, Phys. Rev. B 92, 035201 (2015).CrossRefGoogle Scholar
  29. 29.
    C. Tanase, E.J. Meijer, P.W.M. Blom, and D.M. de Leeuw, Phys. Rev. Lett. 91, 216601 (2003).CrossRefGoogle Scholar
  30. 30.
    C. Tanase, P.W.M. Blom, and D.M. de Leeuw, Phys. Rev. B 70, 193202 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Physical ElectronicsUniversity of Electronic Science and TechnologyChengduChina

Personalised recommendations