Detailed Transient Multiphysics Model for Fast and Accurate Design, Simulation and Optimization of a Thermoelectric Generator (TEG) or Thermal Energy Harvesting Device

  • Alfred PiggottEmail author
Progress and Challenges for Emerging Integrated Energy Modules
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules
  2. Progress and Challenges for Emerging Integrated Energy Modules
  3. Progress and Challenges for Emerging Integrated Energy Modules
  4. Progress and Challenges for Emerging Integrated Energy Modules


Described herein is a detailed and comprehensive multiphysics model of a thermoelectric generator (TEG). The one-dimensional model uses electrical–thermal analogies solved for transient response using SPICE. There are many advantages and applications of thermoelectric generators. Wider use and application advancements are generally limited by the tools available for engineering and scientific studies. Currently, available modeling tools are limited by some combination of speed, platform capabilities, or missing physics that are not used or assumed to be negligible. The TEG module model herein is made up of two sub-models, the thermoelement model and the non-thermoelement model. Rather than a lumped thermoelement model, the model herein makes use of distributed physics that include the following: Thomson effect, temperature dependence, mass, Joule heat, thermal resistance, Seebeck effect, and electrical resistance. The non-thermoelement model takes into account temperature dependence and simulates Joule heat generation, thermal resistances, thermal and electrical interface resistances, and mass for and between the ceramic, copper, and solder. The comprehensive model herein was correlated to experimental data that simultaneously varied electrical current and hot and cold side temperatures with time. Very minimal adjustments to reported thermoelectric properties were required to almost perfectly match the experimental transient power output. The effects of the non-thermoelement model, distributed Thomson effect model and distributed temperature dependent property model were quantified. The model ran very quickly, taking 2.5 real-time seconds to run a 4000 s transient simulation.


Thermoelectric thermoelectric generator TEG thermal energy harvesting SPICE Thomson effect Seebeck effect Peltier effect module transient device 



Thank you to Applied Thermoelectric Solutions LLC for the generous support in making this TEG model and project a reality.


  1. 1.
    A. Piggott, How Thermoelectric Generators Work. (Applied Thermoelectric Solutions LLC), Accessed 1 Nov 2018.
  2. 2.
    D. Champier, in 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015)(2017), pp. 167–181.Google Scholar
  3. 3.
    A. Piggott, Introduction to Thermoelectrics and Medical Applications. (Applied Thermoelectric Solutions LLC), Accessed 1 Jan 2018.
  4. 4.
    E.E. Antonova and D.C. Looman, in 24th International Conference Thermoelectrics (ICT) (2005), pp. 200–203.Google Scholar
  5. 5.
    W. Lia, M.C. Paula, A. Montecuccoa, A.R. Knoxa, J. Sivitera, N. Sellamib, X. long Mengb, E.F. Fernandezb, T.K. Mallickb, P. Mullena, A. Ashrafa, A. Samarellia, L.F. Llina, D.J. Paula, D.H. Gregoryc, M. Gaod, T. Sweetd, F. Azoughe, R. Lowndese, and R. Freere, in Energy Procedia (2015), pp. 633–638.Google Scholar
  6. 6.
    M. Jaegle, in Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover (2008).Google Scholar
  7. 7.
    O. Sullivan, B. Alexandrov, S. Mukhopadhyay, and S. Kumar, J. Electron. Packag. 135, 3 (2013).CrossRefGoogle Scholar
  8. 8.
    M. Karri, Ph.D. Thesis, Clarkson University (2011).Google Scholar
  9. 9.
    D.T. Crane, J. Electron. Mater. 40, 5 (2011).CrossRefGoogle Scholar
  10. 10.
    A.J. Piggott and J.S. Allen, ECS J. Solid State Sci. Technol. 6, 3 (2017).Google Scholar
  11. 11.
    A.J. Piggott, Masters Thesis, Michigan Technological University (2015).Google Scholar
  12. 12.
    A.J. Piggott and J.S. Allen, ECS J. Solid State Sci. Technol. 6, 12 (2017).Google Scholar
  13. 13.
    D. Mitrani, J. Salazar, A. Turi, M.J. Garcia, and J.A. Chavez, Microelectron. J. 40, 1406 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Chen, L. Rosendahl, I. Bach, T. Condra, and J.K. Pedersen, in International Conference on Thermoelectrics (ICT) (2006), pp. 214–219.Google Scholar
  15. 15.
    A. Mirocha and P. Dziurdzia, in ICSES 2008 International Conference on Signals and Electronic Systems (2008), pp. 317–320.Google Scholar
  16. 16.
    J.A. Chavez, J.A. Ortega, J. Salazar, A. Turo and M.J. Garcia, in Conference Record: IEEE Instrumentation and Measurement Technology (2000), pp. 1019–1023.Google Scholar
  17. 17.
    S. Lineykin and S. Ben-Yaakov, in 23rd IEEE Convention of Electrical and Electronics Engineers in Israel (2004), pp. 346–349.Google Scholar
  18. 18.
    S. Lineykin, IEEE Power Electron. Lett. 3, 2 (2005).CrossRefGoogle Scholar
  19. 19.
    L.W. Nagel and D.O. Pederson, SPICE (Simulation Program with Integrated Circuit Emphasis), Technical Report, University of California, Berkeley, (1973).Google Scholar
  20. 20.
    A.F. Robertson and D. Gross, J. Res. Natl. Bur. Stand. 61, 2 (1958).CrossRefGoogle Scholar
  21. 21.
    T. Wey, in IEEE North-East Workshop on Circuits and Systems (2006), pp. 277–280.Google Scholar
  22. 22.
    S. Kima, S. Cho, N. Kim, and J. Park, IEICE Electron. Expr. 7, 20 (2010).CrossRefGoogle Scholar
  23. 23.
    V. Milanovic, M. Hopcroft, C. Zincke, M. Zaghloul, and K.S.J. Pister, Therminic 2000, International Workshop on Thermal Investigations of ICs and Systems (2000), pp. 1–5.Google Scholar
  24. 24.
    N.Q. Nguyen and K.V. Pochiraju, Appl. Therm. Eng. 51, 1 (2013).CrossRefGoogle Scholar
  25. 25.
    R. Lamba and S.C. Kaushik, Energy Convers. Manag. 144, 388 (2017).CrossRefGoogle Scholar
  26. 26.
    W. Thomson, Proc. R. Soc. Lond. 7, 49 (1854).Google Scholar
  27. 27.
    H. Lee, Energy 66, 56 (2013).Google Scholar
  28. 28.
    D.M. Avadhanulu and D.P. Kshirsagar, A Textbook of Engineering Physics (Ram Nagar, S. Chand & Company PVT. LTD, 2008), pp. 435–446.Google Scholar
  29. 29.
    S. Riffat, X. Ma, and R. Wilson, Appl. Therm. Eng. 26, 5 (2006).Google Scholar
  30. 30.
    GM250-127-14-10 Thermoelectric generator module data sheet, European Thermodynamics Limited (2017).Google Scholar
  31. 31.
    The National Institutes of Health (NIH), Pubchem Compound Database (Compound Summary for CID 6379155 Bismuth Telluride), Accessed Jan 2018.
  32. 32.
    A.S. Pashinkin, A.S. Malkova, and M.S. Mikhailova, Izv. Vyssh. Uchebn. Zaved., Elektron. 5, 78 (2007).Google Scholar
  33. 33.
    Y.I. Shterna, S. Malkovaa, and S. Pashinkin, Inorg. Mater. (2008).
  34. 34.
    Purdue University, Volume 4, (The Macmillan Company, Collier-Macmillan Limited, New York, 1967), pp. 30–40.Google Scholar
  35. 35.
    T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th Edn (Wiley, New York, 2011), p. 983.Google Scholar
  36. 36.
    Melcor, Thermoelectric Handbook, Unknown.Google Scholar
  37. 37.
    Alasir, Solder alloys: physical and mechanical properties, Accessed 2 Jan 2018.
  38. 38.
    Matweb Material Property Data, Indium corp. indalloy 106 (sn63) sn-pb solder alloy, Accessed 18 Feb 2018.
  39. 39.
    J.G. Bai, Z.Z. Zhang, G.Q. Lu, and D.P.H. Hasselman, Int. J. Thermophys. 26, 5 (2005).CrossRefGoogle Scholar
  40. 40.
    C.N. Liao, C.H. Lee, and W.J. Chen, Electrochem. Solid State Lett. 10, 9 (2007).Google Scholar
  41. 41.
    L.W. da Silva and M. Kaviany, Int. J. Heat Mass Transf. 47, 2417 (2004).CrossRefGoogle Scholar
  42. 42.
    R.A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Applied Thermoelectric Solutions LLCNoviUSA

Personalised recommendations