TiO2 Nanotubes with Nanograss Structure: The Effect of the Anodizing Voltage on the Formation Mechanism and Structure Properties

  • Henia FraouceneEmail author
  • Djedjiga Hatem
  • Florence Vacandio
  • Marcel Pasquinelli


Titanium dioxide nanotubes (TiO2 NTs) with a nanograss structure were synthesized in a fluoride organic electrolyte based on ethylene glycol under a potentiostatic anodization regime. By varying the anodization voltage, significant morphological differences were obtained, and the upper NTs’ surface has a nanograss appearance caused by the thinning of top tube walls, the result of the vertical splitting mechanism of nanograss growth. The samples were characterized using techniques such as scanning electron microscopy, x-ray diffraction, UV–visible spectroscopy and Mott–Schottky (MS) analysis. The obtained results show that samples annealed at 500°C for 3 h crystallized into anatase form and displayed the apparition of rutile phase at higher anodization voltage, where the morphology was significantly improved with thicker tube walls. The MS measurement of all samples displays a n-type semiconductor nature and the flat band potential (Ufb) takes less negative values by the increasing anodization voltage. As a result, TiO2 NTs with a nanograss structure expedite electron–hole separation, therefore, providing a lower recombination rate.


TiO2 nanotubes nanograss anodization process properties nanomaterials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Dr. Thomas WOOD (University of Lyon) for the time and interest in improving the paper. This work is carried out with the contribution of the cooperation Project No. 16 MDU 970, Mixed Evaluation and Prospective Commission—Hubert Curien Program (CMEP-PHC) TASSILI.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    M. Morozova, P. Kluson, J. Krysa, M. Vesely, P. Dzik, and O. Solcova, Procedia Eng. 42, 573 (2012).CrossRefGoogle Scholar
  2. 2.
    J. Reszczyńska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, Appl. Surf. Sci. 307, 333 (2014).CrossRefGoogle Scholar
  3. 3.
    P. Pungboon Pansila, N. Witit-anun, and S. Chaiyakun, Procedia Eng. 32, 862 (2012).CrossRefGoogle Scholar
  4. 4.
    D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Adv. Mater. 18, 2807 (2006).CrossRefGoogle Scholar
  5. 5.
    N. Liu, X. Chen, J. Zhang, and J.W. Schwank, Catal. Today 225, 34 (2014).CrossRefGoogle Scholar
  6. 6.
    H. Li, Q. Zhou, Y. Gao, X. Gui, L. Yang, M. Du, E. Shi, J. Shi, A. Cao, and Y. Fang, Nano Res. 8, 900 (2015).CrossRefGoogle Scholar
  7. 7.
    D. Khudhair, A. Bhatti, Y. Li, H. Amani Hamedani, H. Garmestani, P. Hodgson, and S. Nahavandi, Mater. Sci. Eng. C 59, 1125 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, D. Yu, M. Gao, D. Li, Y. Song, R. Jin, W. Ma, and X. Zhu, Electrochim. Acta 160, 33 (2015).CrossRefGoogle Scholar
  9. 9.
    Q. Cai, M. Paulose, O. Varghese, and C. Grimes, J. Mater. Res. 20, 230 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Hazra, K. Dutta, B. Bhowmik, V. Manjuladevi, R.K. Gupta, P.P. Chattopadhyay, and P. Bhattacharyya, J. Electron. Mater. 43, 3229 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Song, X. Zhang, C. Zhou, Y. Lan, Q. Pang, and L. Zhou, J. Electron. Mater. 44, 22 (2015).CrossRefGoogle Scholar
  12. 12.
    Y.L. Pang, S. Lim, H.C. Ong, and W.T. Chong, Appl. Catal. A 481, 127 (2014).CrossRefGoogle Scholar
  13. 13.
    M. Assefpour-Dezfuly, C. Vlachos, and E.H. Andrews, J. Mater. Sci. 19, 3626 (1984).CrossRefGoogle Scholar
  14. 14.
    V. Zwilling, M. Aucouturier, and E. Darque-Ceretti, Electrochim. Acta 45, 921 (1999).CrossRefGoogle Scholar
  15. 15.
    D. Gong, C. Grimes, O. Varghese, W. Hu, R. Singh, Z. Chen, and E. Dickey, J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
  16. 16.
    J. Macák, H. Tsuchiya, and P. Schmuki, Angew. Chemie. Int. Ed. 44, 2100 (2005).CrossRefGoogle Scholar
  17. 17.
    J. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Angew. Chemie. Int. Ed. 44, 7463 (2005).CrossRefGoogle Scholar
  18. 18.
    J. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki, Electrochem. Commun. 7, 1133 (2005).CrossRefGoogle Scholar
  19. 19.
    J. Liang, G. Zhang, Y. Yang, and J. Zhang, J. Mater. Chem. A. 2, 19841 (2014).CrossRefGoogle Scholar
  20. 20.
    J. Yan and F. Zhou, J. Mater. Chem. 21, 9406 (2011).CrossRefGoogle Scholar
  21. 21.
    R. Sánchez-Tovar, I. Paramasivam, K. Lee, and P. Schmuki, J. Mater. Chem. 22, 12792 (2012).CrossRefGoogle Scholar
  22. 22.
    R. Lü, W. Zhou, K. Shi, Y. Yang, L. Wang, K. Pan, C. Tian, Z. Ren, and H. Fu, Nanoscale 5, 8569 (2013).CrossRefGoogle Scholar
  23. 23.
    M. Kalbacova, J.M. Macak, F. Schmidt-Stein, C.T. Mierke, and P. Schmuki, Phys. Status Solidi RRL 2, 194 (2008).CrossRefGoogle Scholar
  24. 24.
    Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, and A. Fujishima, Environ. Sci. Technol. 42, 8547 (2008).CrossRefGoogle Scholar
  25. 25.
    J. Kong, Y. Wang, Q. Sun, and D. Meng, J. Electron. Mater. 46, 4791 (2017).CrossRefGoogle Scholar
  26. 26.
    M. Xia, L. Huang, Y. Zhang, and Y. Wang, J. Electron. Mater. 47, 5291 (2018).CrossRefGoogle Scholar
  27. 27.
    K.M. Kummer, E.N. Taylor, N.G. Durmas, K.M. Tarquinio, B. Ercan, and T.J. Webster, J. Biomed. Mater. Res. B 101, 677 (2013).CrossRefGoogle Scholar
  28. 28.
    F. Mohammadpour and M. Moradi, Mater. Sci. Semicond. Process. 39, 255 (2015).CrossRefGoogle Scholar
  29. 29.
    J. Naduvath, P. Bhargava, and S. Mallick, Chem. Phys. Lett. 626, 15 (2015).CrossRefGoogle Scholar
  30. 30.
    J.H. Lim and J. Choi, Small 3, 1504 (2007).CrossRefGoogle Scholar
  31. 31.
    C. Zhang, J. Xing, H. Fan, W. Zhang, M. Liao, and Y. Song, J. Mater. Sci. 52, 3146 (2017).CrossRefGoogle Scholar
  32. 32.
    D. Wang, L. Liu, F. Zhang, K. Tao, E. Pippel, and K. Domen, Nano Lett. 11, 3649 (2011).CrossRefGoogle Scholar
  33. 33.
    S. Zhao, Y. Chen, Z. Zhao, L. Jiang, C. Zhang, J. Kong, and X. Zhu, Electrochim. Acta 266, 233 (2018).CrossRefGoogle Scholar
  34. 34.
    K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, Electrochim. Acta 210, 367 (2016).CrossRefGoogle Scholar
  35. 35.
    M. Michalska-Domańska, P. Nyga, and M. Czerwiński, Corros. Sci. 134, 99 (2018).CrossRefGoogle Scholar
  36. 36.
    Y. Sun and K.P. Yan, Int. J. Hydrogen Energy 39, 11368 (2014).CrossRefGoogle Scholar
  37. 37.
    S. Liu, J. Yu, and M. Jaroniec, Chem. Mater. 23, 4085 (2011).CrossRefGoogle Scholar
  38. 38.
    Y.S. Sohn, Y.R. Smith, M. Misra, and V.R. Subramanian, Appl. Catal. B 84, 372 (2008).CrossRefGoogle Scholar
  39. 39.
    P. Acevedo-Peña, J.E. Carrera-Crespo, F. González, and I. González, Electrochim. Acta 140, 564 (2014).CrossRefGoogle Scholar
  40. 40.
    K. Zhu, T.B. Vinzant, N.R. Neale, and A.J. Frank, Nano Lett. 7, 3739 (2007).CrossRefGoogle Scholar
  41. 41.
    P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011).CrossRefGoogle Scholar
  42. 42.
    Y. Xue, Y. Sun, G. Wang, K. Yan, and J. Zhao, Electrochim. Acta 155, 312 (2015).CrossRefGoogle Scholar
  43. 43.
    V. Galstyan, A. Vomiero, E. Comini, G. Faglia, and G. Sberveglieri, RSC Adv. 1, 1038 (2011).CrossRefGoogle Scholar
  44. 44.
    A.F. Kanta, M. Poelman, and A. Decroly, Sol. Energy Mater. Sol. Cells 133, 76 (2015).CrossRefGoogle Scholar
  45. 45.
    D. Khudhair, H.A. Hamedani, J. Gaburro, S. Shafei, S. Nahavandi, H. Garmestani, and A. Bhatti, Mater. Sci. Eng. C 77, 111 (2017).CrossRefGoogle Scholar
  46. 46.
    Z. Wu, S. Guo, H. Wang, and Y. Liu, Electrochem. Commun. 11, 1692 (2009).CrossRefGoogle Scholar
  47. 47.
    J. Wang and Z. Lin, Chem. Mater. 20, 1257 (2008).CrossRefGoogle Scholar
  48. 48.
    A. Haring, A. Morris, and M. Hu, Materials 5, 1890 (2012).CrossRefGoogle Scholar
  49. 49.
    S. Berger, S.P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J.S. Hammond, D.F. Paul, and S. Reichlmaier, Surf. Sci. 605, L57 (2011).CrossRefGoogle Scholar
  50. 50.
    O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, and E.C. Dickey, J. Mater. Res. 18, 156 (2003).CrossRefGoogle Scholar
  51. 51.
    J. Zhao, X. Wang, T. Sun, and L. Li, J. Alloys Compd. 434, 792 (2007).CrossRefGoogle Scholar
  52. 52.
    Z. Lockman, S. Sreekantan, S. Ismail, L. Schmidt-Mende, and J.L. MacManus-Driscoll, J. Alloys Compd. 503, 359 (2010).CrossRefGoogle Scholar
  53. 53.
    R.S. Mane, W.J. Lee, H.M. Pathan, and S.H. Han, J. Phys. Chem. B 109, 24254 (2005).CrossRefGoogle Scholar
  54. 54.
    Z. Sun, J.H. Kim, T. Liao, Y. Zhao, F. Bijarbooneh, V. Malgras, and S.X. Dou, CrystEngComm 14, 5472 (2012).CrossRefGoogle Scholar
  55. 55.
    S. Palmas, A.M. Polcaro, J.R. Ruiz, A. Da Pozzo, M. Mascia, and A. Vacca, Int. J. Hydrogen Energy 35, 6561 (2010).CrossRefGoogle Scholar
  56. 56.
    P. Acevedo-Peña and I. González, Procedia Chem. 12, 34 (2014).CrossRefGoogle Scholar
  57. 57.
    B. Munirathinam and L. Neelakantan, J. Electroanal. Chem. 770, 73 (2016).CrossRefGoogle Scholar
  58. 58.
    J. Borràs-Ferrís, R. Sánchez-Tovar, E. Blasco-Tamarit, R.M. Fernández-Domene, and J. Garcia-Anton, Electrochim. Acta 196, 24 (2016).CrossRefGoogle Scholar
  59. 59.
    M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, J. Power Sources 181, 46 (2008).CrossRefGoogle Scholar
  60. 60.
    R. Sánchez-Tovar, R.M. Fernández-Domene, D.M. García-García, and J. García-Antón, J. Power Sources 286, 224 (2015).CrossRefGoogle Scholar
  61. 61.
    D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang, and Y. Liu, Electrochim. Acta 130, 290 (2014).CrossRefGoogle Scholar
  62. 62.
    S. Ait Ali Yahia, L. Hamadou, A. Kadri, N. Benbrahim, and E.M.M. Sutter, J. Electrochem. Soc. 159, K83 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Henia Fraoucene
    • 1
    Email author
  • Djedjiga Hatem
    • 1
  • Florence Vacandio
    • 2
  • Marcel Pasquinelli
    • 3
  1. 1.Laboratory of Advanced Technologies of Genie Electrics (LATAGE), Faculty of Electrical and Computer EngineeringMouloud Mammeri University (UMMTO)Tizi-OuzouAlgeria
  2. 2.UMR 7246 Matériaux Divisés, Interfaces, Réactivité, Electrochimie (MADIREL)Aix Marseille Université, St Jérôme CenterMarseille Cedex 20France
  3. 3.UMR 7334 Institute of Microelectronic Materials Nanosciences of Provence (IM2NP), Optoelectronics and Photovoltaics (OPTO-PV) TeamAix Marseille Université, Faculty of St JérômeMarseille Cedex 20France

Personalised recommendations