Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3376–3382 | Cite as

Impact of Rotation Rate on Bismuth Saturation in GaAsBi Grown by Molecular Beam Epitaxy

  • Margaret A. Stevens
  • Kevin A. Grossklaus
  • John H. McElearney
  • Thomas E. VanderveldeEmail author
Open Access
Topical Collection: 60th Electronic Materials Conference 2018
Part of the following topical collections:
  1. 60th Electronic Materials Conference 2018

Abstract

GaAs1−xBix has been grown by solid-source molecular beam epitaxy using varying substrate rotation rates. Changes in local bismuth saturation were studied by varying the Bi/Ga pressure ratio across the wafer. Films were grown on both GaAs and InGaAs buffer layers with varying indium content to change the strain conditions of the bismide layer and the out-of-plane growth rate. All samples demonstrated vertical composition modulations with a period of ∼ 4 nm that tracked with the rate of growth per substrate rotation cycle. The thermal stability of these composition modulations was shown to behave similarly to bulk GaAsBi. Bismide composition modulations are attributed to the low growth temperature and the varying Bi/Ga pressure ratio across the sample rather than the varying V/III ratio.

Keywords

III–V materials bismuth compounds molecular beam epitaxy film strain atom probe tomography substrate rotation 

Notes

Acknowledgments

This work is supported by the Office of Naval Research (N00014-15-1-2946) and the National Science Foundation (NSF ECCS-1337783). M. Stevens acknowledges support from the NASA Space Technology Research Fellowship (NNX15AQ79H). This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF Award No. 1541959. CNS is part of Harvard University. This work also made use of the Shared Experimental Facilities at the Massachusetts Institute of Technology, supported in part by the MRSEC Program of the National Science Foundation under Award No. DMR - 1419807.

Conflict of Interest

The authors declare that they have no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

  1. 1.
    S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).CrossRefGoogle Scholar
  2. 2.
    K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.J. Cho, and J. Furdyna, Phys. Rev. B 75, 045203 (2007).CrossRefGoogle Scholar
  3. 3.
    H. Jacobsen, B. Puchala, T.F. Kuech, and D. Morgan, Phys. Rev. B 86, 085207 (2012).CrossRefGoogle Scholar
  4. 4.
    R.D. Richards, A. Mellor, F. Harun, J.S. Cheong, N.P. Hylton, T. Wilson, T. Thomas, J.S. Roberts, N.J. Ekins-Daukes, and J.P.R. David, Sol. Energy Mater. Sol. Cells 172, 238 (2017).CrossRefGoogle Scholar
  5. 5.
    Z. Zhou, D.F. Mendes, R.D. Richards, F. Bastiman, and J.P. David, Semicond. Sci. Technol. 30, 094004 (2015).CrossRefGoogle Scholar
  6. 6.
    A. Geižutis, V. Pačebutas, R. Butkute, P. Svidovsky, V. Strazdiene, and A. Krotkus, Solid State Electron. 99, 101 (2014).CrossRefGoogle Scholar
  7. 7.
    I.P. Marko, S.R. Jin, K. Hild, Z. Batool, Z.L. Bushell, P. Ludewig, W. Stolz, K. Volz, R. Butkute, V. Pačebutas, A. Geizutis, A. Krotkus, and S.J. Sweeney, Semicond. Sci. Technol. 30, 094008 (2015).CrossRefGoogle Scholar
  8. 8.
    Z. Batool, K. Hild, T.J.C. Hosea, T. Tiedje, and S.J. Sweeney, J. Appl. Phys. 111, 113108 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Stevens, A. Licht, N. Pfiester, E. Carlson, K. Grossklaus, and T. Vandervelde, in 44th IEEE Photovoltaics Specialist Conference Proceedings (2017), pp. 0701–0705.Google Scholar
  10. 10.
    R.B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, Appl. Phys. Lett. 101, 082112 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Masnadi-Shirazi, R.B. Lewis, V. Bahrami-Yekta, T. Tiedje, M. Chicoine, and P. Servati, J. Appl. Phys. 116, 223506 (2014).CrossRefGoogle Scholar
  12. 12.
    F. Bastiman, A.R.B. Mohmad, J.S. Ng, J.P.R. David, and S.J. Sweeney, J. Cryst. Growth 338, 57 (2012).CrossRefGoogle Scholar
  13. 13.
    E. Luna, M. Wu, J. Puustinen, M. Guina, and A. Trampert, J. Appl. Phys. 117, 185302 (2015).CrossRefGoogle Scholar
  14. 14.
    C.R. Tait, L. Yan, and J.M. Millunchick, Appl. Phys. Lett. 111, 042105 (2017).CrossRefGoogle Scholar
  15. 15.
    A.G. Norman, R. France, and A.J. Ptak, J. Vac. Sci. Technol. B 29, 03C121 (2011).CrossRefGoogle Scholar
  16. 16.
    D.F. Reyes, F. Bastiman, C.J. Hunter, D.L. Sales, A.M. Sanchez, J.P.R. David, and D. González, Nanoscale Res. Lett. 9, 23 (2014).CrossRefGoogle Scholar
  17. 17.
    L.C. Hirst, M.P. Lumb, J. Abell, C.T. Ellis, J.G. Tischler, I. Vurgaftman, J.R. Meyer, R.J. Walters, and M. González, J. Appl. Phys. 117, 215704 (2015).CrossRefGoogle Scholar
  18. 18.
    I. Garcia, I. Rey-Stolle, C. Algora, W. Stolz, and K. Volz, J. Cryst. Growth 310, 5209 (2008).CrossRefGoogle Scholar
  19. 19.
    A.W. Wood, S.E. Babcock, J. Li, and A.S. Brown, J. Vac. Sci. Technol. A Vac. Surf. Film 33, 031506 (2015).CrossRefGoogle Scholar
  20. 20.
    P. Reimer, J.R. Buschert, S. Lee, and J. Furdyna, Phys. Rev. 61, 8388 (2000).CrossRefGoogle Scholar
  21. 21.
    K. Alavi, P.M. Petroff, W.R. Wagner, and A.Y. Cho, J. Vac. Sci. Technol. B 1, 146 (1983).CrossRefGoogle Scholar
  22. 22.
    S.N.G. Chu, N. Chand, D.L. Sivco, and A.T. Macrander, J. Appl. Phys. 65, 3838 (1989).CrossRefGoogle Scholar
  23. 23.
    J.I. Pankove, Optical Processes in Semiconductors (New York: Dover, 1975).Google Scholar
  24. 24.
    G. Vardar, S.W. Paleg, M.V. Warren, M. Kang, S. Jeon, and R.S. Goldman, Appl. Phys. Lett. 102, 042106 (2013).CrossRefGoogle Scholar
  25. 25.
    E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer, and K. Volz, J. Cryst. Growth 408, 71 (2014).CrossRefGoogle Scholar
  26. 26.
    A. Duzik and J.M. Millunchick, J. Cryst. Growth 390, 5 (2014).CrossRefGoogle Scholar
  27. 27.
    A.J. Ptak, R. France, D.A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.S. Jiang, J. Cryst. Growth 338, 107 (2012).CrossRefGoogle Scholar
  28. 28.
    J. Li, K. Forghani, K. Collar, T.F. Kuech, A.S. Brown, W. Jiao, and W. Kong, J. Appl. Phys. 116, 043524 (2014).CrossRefGoogle Scholar
  29. 29.
    A.R. Mohmad, F. Bastiman, C.J. Hunter, R. Richards, S.J. Sweeney, J.S. Ng, and J.P.R. David, Appl. Phys. Lett. 101, 012106 (2012).CrossRefGoogle Scholar
  30. 30.
    J. Puustinen, M. Wu, E. Luna, A. Schramm, P. Laukkanen, M. Laitinen, T. Sajavaara, and M. Guina, J. Appl. Phys. 114, 243504 (2013).CrossRefGoogle Scholar
  31. 31.
    M. Wu, E. Luna, J. Puustinen, M. Guina, and A. Trampert, Nanotechnology 25, 205605 (2014).CrossRefGoogle Scholar
  32. 32.
    A.W. Wood, W. Chen, H. Kim, and Y. Guan, Nanotechnology 28, 215704 (2017).CrossRefGoogle Scholar
  33. 33.
    H. Kim, K. Forghani, Y. Guan, K. Kim, A.W. Wood, J. Lee, S.E. Babcock, T.F. Kuech, and L.J. Mawst, J. Cryst. Growth 452, 276 (2016).CrossRefGoogle Scholar
  34. 34.
    R.D. Richards, F. Bastiman, C.J. Hunter, D.F. Mendes, A.R. Mohmad, J.S. Roberts, and J.P.R. David, J. Cryst. Growth 390, 120 (2014).CrossRefGoogle Scholar
  35. 35.
    F. Bastiman, A.G. Cullis, J.P.R. David, and S.J. Sweeney, J. Cryst. Growth 341, 19 (2012).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Margaret A. Stevens
    • 1
  • Kevin A. Grossklaus
    • 1
  • John H. McElearney
    • 1
  • Thomas E. Vandervelde
    • 1
    Email author
  1. 1.Renewable Energy and Applied Photonics Labs, ECE DepartmentTufts UniversityMedfordUSA

Personalised recommendations