Advertisement

One Pot, Rapid and Green Photo-Chemical Synthesis of Ag2S and Ag2S-ZnS Core–Shells

  • M. KarimipourEmail author
  • M. Bagheri
  • M. Molaei
Article
  • 5 Downloads

Abstract

Water soluble Ag2S and Ag2S-ZnS core–shells were prepared using a photochemical approach by means of 12 W UV lamp with 250–400 nm wavelengths. Energy dispersive x-ray spectrometry and elemental mapping confirmed the uniform formation of quantum dots (QDs). X-ray Diffraction and Transmission Electron Microscope characterizations were employed to confirm the formation of Ag2S and Ag2S-ZnS core-shells with sizes about 3 nm and 10 nm, respectively. Fourier transform infrared spectroscopy indicated that UV illumination results in good attachment of 3-mercaptopropionic acid (MPA) to the surface of Ag2S QDs. Photoluminescence measurements showed a strong emission around 870 nm with photoluminescence quantum yields of about 3.8% and 4.6% for Ag2S and Ag2S-ZnS core-shells, respectively. This green method of synthesis using MPA together with their rather high emission yield is promising for the application for in vivo bio-imaging.

Keywords

Photochemical synthesis capping agent Ag2S-ZnS photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kumar, D. Kukkar, A. Deep, S.C. Sharma, and L.M. Bharadwaj, Adv. Mater. Lett 471, 3 (2012).  https://doi.org/10.5185/amlett.2012.icnano.296.Google Scholar
  2. 2.
    S. Jin, Y. Hu, Z. Gu, L. Liu, and H.C. Wu, J. Nano Mater. 2011, 69 (2011).  https://doi.org/10.1155/2011/834139.Google Scholar
  3. 3.
    Y. Lin, L. Zhang, W. Yao, H. Qian, D. Ding, W. Wu, and X. Jiang, ACS Appl. Mater. Interfaces 3, 995 (2011).  https://doi.org/10.1021/am100982p.CrossRefGoogle Scholar
  4. 4.
    B.D. Chernomordik, A.R. Marshall, G.F. Pach, J.M. Luther, and M. Beard, Chem. Mater. 29, 189 (2017).  https://doi.org/10.1021/acs.chemmater.6b02939.CrossRefGoogle Scholar
  5. 5.
    C.M. Chuang, P.R. Brown, V. Bulovic, and M.G. Bawendi, Nat. Mater. 13, 796 (2014).  https://doi.org/10.1038/nmat3984.CrossRefGoogle Scholar
  6. 6.
    S. Shen, Y. Zhang, L. Peng, Y. Du, and Q. Wan, Angew. Chem. 123, 7253 (2011).  https://doi.org/10.1002/ange.201101084.CrossRefGoogle Scholar
  7. 7.
    X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E.H. Sargent, Nat. Photonics 10, 253 (2016).  https://doi.org/10.1038/nphoton.2016.11.CrossRefGoogle Scholar
  8. 8.
    S. Li, Z. Chen, and W. Zhang, Mater. Lett. 72, 22 (2012).  https://doi.org/10.1016/j.matlet.2011.12.052.CrossRefGoogle Scholar
  9. 9.
    M. Molaei, M. Marandi, E. Saievar-Iranizad, N. Taghavinia, B. Liu, H.D. Sun, and X.W. Sun, J. Lumin. 132, 467 (2012).  https://doi.org/10.1016/j.jlumin.2011.08.038.CrossRefGoogle Scholar
  10. 10.
    S.O. Gomes, C.S. Vieira, D.B. Almeida, J.R.S. Mallet, R.S. Menna-Barreto, C. Cesar, and D. Feder, Sensors 11, 11664 (2011).  https://doi.org/10.3390/s111211664.CrossRefGoogle Scholar
  11. 11.
    S. Bhanoth, A. Tyagi, A.K. Verma, and P. Khanna, Adv. Mater. Lett. 8, 368 (2017).  https://doi.org/10.5185/amlett.2017.6456.CrossRefGoogle Scholar
  12. 12.
    T. Zhang, Y. Hu, M. Tang, L. Kong, J. Ying, T. Wu, Y. Xue, and Y. Pu, Mol. Sci. 16, 23279 (2015).  https://doi.org/10.3390/ijms161023279.CrossRefGoogle Scholar
  13. 13.
    S. Bhanoth, A. Kshirsagar, P.K. Khanna, A. Tyagi, and A. Verma, Adv. Mater. Lett. 7, 100 (2016).  https://doi.org/10.4236/anp.2016.51001.Google Scholar
  14. 14.
    C. Wang, Y. Wang, L. Xu, D. Zhang, M. Liu, X. Li, H. Sun, Q. Lin, and B. Yang, Small 8, 3137 (2012).  https://doi.org/10.1002/smll.201200376.CrossRefGoogle Scholar
  15. 15.
    R. Gui, H. Jin, Z. Wang, and L. Tan, Coor. Chem. Rev. 91, 296 (2015).  https://doi.org/10.1016/j.ccr.2015.03.023.Google Scholar
  16. 16.
    S. Xu, J. Cui, and L. Wang, SCMs 60, 352 (2017).  https://doi.org/10.1007/s40843-017-9019-4.Google Scholar
  17. 17.
    L. Argueta-Figueroa, O. Martínez-Alvarez, J. Santos-Cruz, R. Garcia, L.S. Acosta-Torres, J. de la Fuente-Hernández, and M.C. Arenas-Arrocena, Mater. Sci. Eng. C 76, 1305 (2017).  https://doi.org/10.1016/j.msec.2017.02.120.CrossRefGoogle Scholar
  18. 18.
    Z. Meng, T. Ghosh, L. Zhu, J.G. Choi, C.Y. Park, and W.C. Oh, J. Mater. Chem. 22, 16127 (2012).  https://doi.org/10.1039/c2jm32344c.CrossRefGoogle Scholar
  19. 19.
    W. Xianfu, H. Hongtao, L. Bo, L. Zhe, C. Di, and S. Guozhen, Crit. Rev. Solid State Mater. Sci. 38, 57 (2013).  https://doi.org/10.1080/10408436.2012.736887.CrossRefGoogle Scholar
  20. 20.
    C. Liu, Y. Ji, and T. Tan, J. Alloys Compd. 570, 23 (2013).  https://doi.org/10.1016/j.jallcom.2013.03.118.CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, D. Jiang, W. Yang, D. Wang, H. Zheng, Y. Du, X. Li, and Q. Li, Superlattice Microstruct. 102, 512 (2017).  https://doi.org/10.1016/j.spmi.2016.11.060.CrossRefGoogle Scholar
  22. 22.
    P. Jiang, R. Wang, and Z. Chen, RSC Adv. 5, 56789 (2015).  https://doi.org/10.1039/C5RA08008H.CrossRefGoogle Scholar
  23. 23.
    G. Murugadoss, R. Jayavel, M. Rajesh Kumar, and R. Thangamuthu, Appl. Nanosci. 6, 503 (2016).  https://doi.org/10.1007/s13204-015-0448-0.CrossRefGoogle Scholar
  24. 24.
    T. Fang, K. Ma, L. Ma, J. Bai, X. Li, H. Song, and H. Guo, J. Phys. Chem. C 116, 12346 (2012).  https://doi.org/10.1021/jp302820u.CrossRefGoogle Scholar
  25. 25.
    A. Kalnaitytė, S. Bagdonas, and R. Rotomskis, Lithuanian J. Phys 54, 256 (2014).  https://doi.org/10.3952/physics.v54i4.3014.Google Scholar
  26. 26.
    M.Z. Hu and T. Zhu, Nanoscale Res. Lett. 10, 469 (2015).  https://doi.org/10.1186/s11671-015-1166-y.CrossRefGoogle Scholar
  27. 27.
    M. Molaei, A.R. Bahador, and M. Karimipour, J. Lumin. 166, 101 (2015).  https://doi.org/10.1016/j.jlumin.2015.05.019.CrossRefGoogle Scholar
  28. 28.
    M. Molaei, F. Salari Bardsiri, A.R. Bahador, and M. Karimipour, Mod. Phys. Lett. B 30, 364 (2016).  https://doi.org/10.1142/S0217984916500743.Google Scholar
  29. 29.
    S. Abbasi, M. Molaei, and M. Karimipour, J. Lumin. 32, 1137 (2017).  https://doi.org/10.1002/bio.3300.CrossRefGoogle Scholar
  30. 30.
    M. Karimipour, N. Moradi, and M. Molaei, J. Lumin. 182, 91 (2017).  https://doi.org/10.1016/j.jlumin.2016.09.063.CrossRefGoogle Scholar
  31. 31.
    P. Jiang, C.N. Zhu, Z.L. Zhang, Z.Q. Tian, and D.W. Pang, Biomaterials 33, 5130 (2012).  https://doi.org/10.1016/j.biomaterials.2012.03.059.CrossRefGoogle Scholar
  32. 32.
    Y. Shu, P. Jiang, D.W. Pang, and Z.L. Zhang, Nanotechnology 26, 275701 (2015).  https://doi.org/10.1088/0957-4484/26/27/275701.CrossRefGoogle Scholar
  33. 33.
    X. Zhang, Y. Gu, and H. Chen, J. Innov. Opt. Health Sci. 7, 1350059 (2014).  https://doi.org/10.1142/S1793545813500594.CrossRefGoogle Scholar
  34. 34.
    L. Tan, S. Liu, Q. Yang, and Y. Shen, Langmuir 31, 3958 (2015).  https://doi.org/10.1021/la5049979.CrossRefGoogle Scholar
  35. 35.
    R. Zhang, X. Xue, Z. Zhuang, J. Zhengac, and Z. Lin, Chem. Commun. 51, 6141 (2015).  https://doi.org/10.1039/c4cc09728a.CrossRefGoogle Scholar
  36. 36.
    M. Karimipour, L. Izadian, and M. Molaei, Luminescence 33, 202 (2017).  https://doi.org/10.1002/bio.3402.CrossRefGoogle Scholar
  37. 37.
    Y.F. Liu, L. Wang, W.Z. Shi, Y.H. Zhanga, and S.M. Fang, RSC Adv. 4, 53142 (2014).  https://doi.org/10.1039/c4ra08360a.CrossRefGoogle Scholar
  38. 38.
    A.R. Bahador, M. Molaei, and M. Karimipour, Mod. Phys. Lett. B 30, 1650227 (2016).  https://doi.org/10.1142/S0217984916502274.CrossRefGoogle Scholar
  39. 39.
    R. Khafajeh, M. Molaei, and M. Karimipour, J. Lumin. 32, 581 (2017).  https://doi.org/10.1002/bio.3224.CrossRefGoogle Scholar
  40. 40.
    R. Cui, Y.P. Gu, L. Bao, J.Y. Zhao, B.P. Qi, Z.L. Zhang, Z.X. Xie, and D.W. Pang, Anal. Chem. 84, 8932 (2012).  https://doi.org/10.1021/ac301835f.CrossRefGoogle Scholar
  41. 41.
    P. Ingole, G. Markad, D. Saraf, L. Tatikondewar, O. Nene, A. Kshirsagar, and S. Haram, J. Phys. Chem. C 117, 7376 (2013).  https://doi.org/10.1021/jp400021u.CrossRefGoogle Scholar
  42. 42.
    F. Amirian, M. Molaei, M. Karimipour, and A.R. Bahador, J. Lumin. 196, 174 (2018).  https://doi.org/10.1016/j.jlumin.2017.12.005.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations