Journal of Electronic Materials

, Volume 48, Issue 5, pp 2731–2736 | Cite as

Influence of Zn Concentration on Interfacial Intermetallics During Liquid and Solid State Reaction of Hypo and Hypereutectic Sn-Zn Solder Alloys

  • H. R. KotadiaEmail author
  • S. H. Mannan
  • A. Das
Open Access


In this study, Sn-Zn solder samples containing 2 to 12 wt.% Zn were fabricated and reflowed into a Cu substrate. The microstructure of solder samples was observed after reflow and aging for up to 1000 h at 150°C. Thermodynamically stable intermetallics (IMCs) Cu-Zn and Cu-Sn formed at the interface depending on the solder composition. Formation of different interfacial IMCs during soldering and after prolonged aging is explained by the spalling mechanism that resulted from the depletion of Zn from the solder matrix.


Soldering intermetallics wettability spalling lead-free solder Sn-Zn alloys 



This research was funded by the Engineering and Physical Sciences Research Council (Grant No. EP/G054339/1) in collaboration with Henkel Technologies, Dynex, and Schlumberger.


  1. 1.
    H.R. Kotadia, P.D. Howes, and S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014).CrossRefGoogle Scholar
  2. 2.
    E. Bradley, C.A. Handwerker, J. Bath, R.D. Parker, and R.W. Gedney, Lead-Free Electronics: iNEMI Projects Lead to Successful Manufacturing (New York: Wiley, 2007).CrossRefGoogle Scholar
  3. 3.
    R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan, and W. Jillek, J Alloys Compd. 392, 149 (2005).CrossRefGoogle Scholar
  4. 4.
    M. McCormack, S. Jin, H. Chen, and D. Machusak, J. Electron. Mater. 23, 687 (1994).CrossRefGoogle Scholar
  5. 5.
    H. Wang, S. Xue, W. Chen, and F. Zhao, J. Mater. Sci. Mater. Eletron. 20, 1239 (2009).CrossRefGoogle Scholar
  6. 6.
    L. Zhang, S.-B. Xue, L.-L. Gao, Z. Sheng, H. Ye, Z.-X. Xiao, G. Zeng, Y. Chen, and S.-L. Yu, J. Mater. Sci. Mater. Eletron. 21, 1 (2010).CrossRefGoogle Scholar
  7. 7.
    R.K. Shiue, L.W. Tsay, C.L. Lin, and J.L. Ou, Microelectron. Reliab. 43, 453 (2003).CrossRefGoogle Scholar
  8. 8.
    H.R. Kotadia, O. Mokhtari, M. Bottrill, M.P. Clode, M.A. Green, and S.H. Mannan, J. Electron. Mater. 39, 2720 (2010).CrossRefGoogle Scholar
  9. 9.
    H.R. Kotadia, O. Mokhtari, M.P. Clode, M.A. Green, and S.H. Mannan, J Alloys Compd. 511, 176 (2012).CrossRefGoogle Scholar
  10. 10.
    H.R. Kotadia, A. Panneerselvam, O. Mokhtari, M.A. Green, and S.H. Mannan, J. Appl. Phys. 11, 074902 (2012).CrossRefGoogle Scholar
  11. 11.
    H.R. Kotadia, A. Panneerselvam, M.W. Sugden, H. Steen, M. Green, S.H. Mannan, and I.E.E.E. Trans, Compon. Packag. Manuf. Technol. 3, 1786 (2013).CrossRefGoogle Scholar
  12. 12.
    F. Wang, X. Ma, and Y. Qian, Scrip. Mater. 53, 699 (2005).CrossRefGoogle Scholar
  13. 13.
    Y.K. Jee, Y.H. Ko, and J. Yu, J. Mater. Res. 22, 1879 (2011).CrossRefGoogle Scholar
  14. 14.
    S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-I. Cho, J. Yu, and W.K. Choi, JOM 56, 34 (2004).CrossRefGoogle Scholar
  15. 15.
    F. Somidin, H. Maeno, M.A.A. Mohd Salleh, X.Q. Tran, S.D. McDonald, S. Matsumura, and K. Nogita, Mater. Char. 138, 113 (2018).CrossRefGoogle Scholar
  16. 16.
    G. Zeng, S.D. McDonald, Q. Gu, and K. Nogita, J. Mater. Res. 27, 2609 (2012).CrossRefGoogle Scholar
  17. 17.
    C.-Y. Yu and J.-G. Duh, Scrip. Mater. 65, 783 (2011).CrossRefGoogle Scholar
  18. 18.
    X. Wei, H. Huang, L. Zhou, M. Zhang, and X. Liu, Mater. Lett. 61, 655 (2007).CrossRefGoogle Scholar
  19. 19.
    K.S. Kim, S.H. Huh, and K. Suganuma, J Alloys Compd. 352, 226 (2003).CrossRefGoogle Scholar
  20. 20.
    C.Y. Chou and S.W. Chen, Acta Mater. 54, 2393 (2006).CrossRefGoogle Scholar
  21. 21.
    M.D. Cheng, S.Y. Chang, S.F. Yen, and T.H. Chuang, J. Electron. Mater. 33, 171 (2004).CrossRefGoogle Scholar
  22. 22.
    J.-W. Jang, L.N. Ramanathan, J.-K. Lin, and D.R. Frear, J. Appl. Phys. 95, 8286 (2004).CrossRefGoogle Scholar
  23. 23.
    J.W.R. Teo and Y.F. Sun, Acta Mater. 56, 242 (2008).CrossRefGoogle Scholar
  24. 24.
    K.-Z. Wang and C.-M. Chen, J. Electron. Mater. 34, 1543 (2005).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Warwick Manufacturing GroupThe University of WarwickCoventryUK
  2. 2.Department of PhysicsKing’s College LondonStrand, LondonUK
  3. 3.Materials Research Centre, College of EngineeringSwansea University Bay CampusSwanseaUK

Personalised recommendations