Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2718–2730 | Cite as

Studies on Multifunctional Properties of SILAR Synthesized CuO Thin Films for Enhanced Supercapacitor, Photocatalytic and Ethanol Sensing Applications

  • Mahima Ranjan Das
  • Ayan Mukherjee
  • Payel Maiti
  • Sachindranath Das
  • Partha MitraEmail author
Article
  • 48 Downloads

Abstract

CuO thin films were successfully deposited using a simple, cost-effective and nearly room-temperature successive ionic layer adsorption and reaction routes. The material has been characterized using x-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. Increase of grain size and decrease of microstrain were observed for a particular level of dipping (30 cycles) and further increase in dipping cycles shows a reverse tendency. The effect of the dipping cycle of the synthesized films on their supercapacitive, photocatalytic and ethanol-sensing performance were investigated. A 30-cycle dipped CuO thin film-based electrode provides a maximum specific capacitance of 585 Fg−1 at the voltage scan rate of 2 mVs−1 from cyclic voltammetry measurement and 554 Fg−1 at a current density of 1 Ag−1 from the charging to discharging curve. This electrode exhibited long-term cycle stability with 92.3% capacitance retention after 4000 cycles. CuO films synthesized for 30 dipping cycles showed the highest photocatalytic activities with 91.1% degradation of methylene blue under exposure to visible light of 200-W energy in a time duration of 4 h. Maximum sensitivity of 67% in the presence of 1500 ppm ethanol at the operating temperature 160°C was obtained for 30 dipping cycles film. Such attractive properties of low cost and facile synthesized CuO thin films makes them a suitable candidate for different commercial applications.

Keywords

SILAR CuO thin film supercapacitor photocatalytic ethanol sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Mahima Ranjan Das acknowledges University Grants Commission (UGC), India for proving Junior Research Fellowship (Ref. No. 21/12/2014(ii)EU-V) during the work (IF140920). The authors acknowledge the instrumental support from Department of Science and Technology (DST), Government of India under FIST (Fund for Improvement in Science and Technology) programme (Grant No. SR/FST/PS-II-001/2011). Sachindranath Das (IFA-13-PH-71) wish to thank Department of Science and Technology (DST), for financial support. The authors also acknowledge Siyasanga Mpelane, Department of Chemistry, Johannesburg University, South Africa for TEM measurement.

References

  1. 1.
    R. Katwal, H. Kaur, G. Sharma, M. Naushad, and D. Pathania, J. Ind. Eng. Chem. 31, 173 (2015).CrossRefGoogle Scholar
  2. 2.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, Nano Lett. 5, 191 (2005).CrossRefGoogle Scholar
  3. 3.
    S.M. Alshehri, M. Naushad, T. Ahamad, Z.A. Alothman, and A. Aldalbahi, Chem. Eng. J. 254, 181 (2014).CrossRefGoogle Scholar
  4. 4.
    D. Pathania, G. Sharma, and R. Thakur, Chem. Eng. J. 267, 235 (2015).CrossRefGoogle Scholar
  5. 5.
    J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, and S.J. Shi, J. Power Sources 195, 313 (2010).CrossRefGoogle Scholar
  6. 6.
    H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, and H. Nagabhushana, J. Taibah Univ. Sci. 9, 7 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Zhu, F. Zhao, L. Pan, Y. Zhang, C. Fan, Y. Zhang, and J.Q. Xiao, J. Appl. Phys. 101, 09H111 (2007).CrossRefGoogle Scholar
  8. 8.
    P. Chand, A. Gaur, A. Kumar, and U. Kumar Gaur, Appl. Surf. Sci. 307, 280 (2014).CrossRefGoogle Scholar
  9. 9.
    A. Von Richthofen, R. Domnick, and R. Cremer, Fresenius J. Anal. Chem. 358, 312 (1997).CrossRefGoogle Scholar
  10. 10.
    U.D. Lanke and M. Vedawyas, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 155, 97 (1999).CrossRefGoogle Scholar
  11. 11.
    K. Mageshwari and R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337 (2013).CrossRefGoogle Scholar
  12. 12.
    F. Bayansal, B. Şahin, M. Yüksel, N. Biyikli, H.A. Çetinkara, and H.S. Güder, J. Alloys Compd. 566, 78 (2013).CrossRefGoogle Scholar
  13. 13.
    X. Zhang, W. Shi, J. Zhu, D.J. Kharistal, W. Zhao, B.S. Lalia, H.H. Hng, and Q. Yan, ACS Nano 5, 2013 (2011).CrossRefGoogle Scholar
  14. 14.
    L. Yu, Y. Jin, L. Li, J. Ma, G. Wang, B. Geng, and X. Zhang, CrystEngComm 15, 7657 (2013).CrossRefGoogle Scholar
  15. 15.
    D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, and C.-J. Park, Dalt. Trans. 42, 6459 (2013).CrossRefGoogle Scholar
  16. 16.
    D.P. Dubal, G.S. Gund, R. Holze, and C.D. Lokhande, J. Power Sources 242, 687 (2013).CrossRefGoogle Scholar
  17. 17.
    D.P. Dubal, G.S. Gund, R. Holze, and C.D. Lokhande, J. Electroanal. Chem. 712, 40 (2014).CrossRefGoogle Scholar
  18. 18.
    A.A. Al-Ghamdi, M.H. Khedr, M. Shahnawaze Ansari, P.M.Z. Hasan, M.S. Abdel-Wahab, and A.A. Farghali, Phys. E Low-Dimensional Syst. Nanostructures 81, 83 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Umadevi and A. Jegatha Christy, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 109, 133 (2013).CrossRefGoogle Scholar
  20. 20.
    Y.-F. Lim, C.S. Chua, C.J.J. Lee, and D. Chi, Phys. Chem. Chem. Phys. 16, 25928 (2014).CrossRefGoogle Scholar
  21. 21.
    G. Korotcenkov, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 139, 1 (2007).CrossRefGoogle Scholar
  22. 22.
    A.S. Zoolfakar, M.Z. Ahmad, R.A. Rani, J.Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, and K. Kalantar-Zadeh, Sens. Actuators B Chem. 185, 620 (2013).CrossRefGoogle Scholar
  23. 23.
    D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, Ceram. Int. 39, 7685 (2013).CrossRefGoogle Scholar
  24. 24.
    P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong, and S. Choopun, Ceram. Int. 35, 649 (2009).CrossRefGoogle Scholar
  25. 25.
    N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, and A. Mondal, Mater. Lett. 65, 3248 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, and M. Sánchez, Thin Solid Films 474, 133 (2005).CrossRefGoogle Scholar
  27. 27.
    D.P. Volanti, M.O. Orlandi, J. Andrés, and E. Longo, CrystEngComm 12, 1696 (2010).CrossRefGoogle Scholar
  28. 28.
    H. Qin, Z. Zhang, X. Liu, Y. Zhang, and J. Hu, J. Magn. Magn. Mater. 322, 1994 (2010).CrossRefGoogle Scholar
  29. 29.
    Y.S. Gong, C. Lee, and C.K. Yang, J. Appl. Phys. 77, 5422 (1995).CrossRefGoogle Scholar
  30. 30.
    D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, and C.D. Lokhande, J. Alloys Compd. 492, 26 (2010).CrossRefGoogle Scholar
  31. 31.
    Y. Akaltun, Thin Solid Films 594, 30 (2015).CrossRefGoogle Scholar
  32. 32.
    H.M. Rietveld, Acta Crystallogr. 22, 151 (1967).CrossRefGoogle Scholar
  33. 33.
    P. Scardi, M. Leoni, and R. Delhez, J. Appl. Crystallogr. 37, 381 (2004).CrossRefGoogle Scholar
  34. 34.
    P. Ghosh, A. Mukherjee, M. Fu, S. Chattopadhyay, and P. Mitra, Phys. E Low-Dimens. Syst. Nanostruct. 74, 570 (2015).CrossRefGoogle Scholar
  35. 35.
    A.A. Yadav and U.J. Chavan, Electrochim. Acta 232, 370 (2017).CrossRefGoogle Scholar
  36. 36.
    Y. Li, Z.-Y. Fu, and B.-L. Su, Adv. Funct. Mater. 22, 4634 (2012).CrossRefGoogle Scholar
  37. 37.
    M.S. Tamboli, D.P. Dubal, S.S. Patil, A.F. Shaikh, V.G. Deonikar, M.V. Kulkarni, N.N. Maldar, A.A.M. Inamuddin, A.M. Asiri, P. Gomez-Romero, B.B. Kale, and D.R. Patil, Chem. Eng. J. 307, 300 (2017).CrossRefGoogle Scholar
  38. 38.
    T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, and C.C. Hu, Adv. Mater. 22, 347 (2010).CrossRefGoogle Scholar
  39. 39.
    S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, and M.F. Mousavi, ACS Appl. Mater. Interfaces 7, 4851 (2015).CrossRefGoogle Scholar
  40. 40.
    A.C. Nwanya, D. Obi, K.I. Ozoemena, R.U. Osuji, C. Awada, A. Ruediger, M. Maaza, F. Rosei, and F.I. Ezema, Electrochim. Acta 198, 220 (2016).CrossRefGoogle Scholar
  41. 41.
    H. Pang, B. Zhang, J. Du, J. Chen, J. Zhang, and S. Li, RSC Adv. 2, 2257 (2012).CrossRefGoogle Scholar
  42. 42.
    Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009).CrossRefGoogle Scholar
  43. 43.
    J. Duay, S.A. Sherrill, Z. Gui, E. Gillette, and S.B. Lee, ACS Nano 7, 1200 (2013).CrossRefGoogle Scholar
  44. 44.
    Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).CrossRefGoogle Scholar
  45. 45.
    D. Zhang, Q.Q. Dong, X. Wang, W. Yan, W. Deng, and L.Y. Shi, J. Phys. Chem. C 117, 20446 (2013).CrossRefGoogle Scholar
  46. 46.
    M. Zhang, Q. Li, D. Fang, I.A. Ayhan, Y. Zhou, L. Dong, C. Xiong, and Q. Wang, RSC Adv. 5, 96205 (2015).CrossRefGoogle Scholar
  47. 47.
    A. Pendashteh, M.S. Rahmanifar, R.B. Kaner, and M.F. Mousavi, Chem. Commun. 50, 1972 (2014).CrossRefGoogle Scholar
  48. 48.
    Y.K. Hsu, Y.C. Chen, and Y.G. Lin, J. Electroanal. Chem. 673, 43 (2012).CrossRefGoogle Scholar
  49. 49.
    M.D. Stoller and R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010).CrossRefGoogle Scholar
  50. 50.
    J. Zhang and X.S. Zhao, Chemsuschem 5, 818 (2012).CrossRefGoogle Scholar
  51. 51.
    G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Nano Lett. 11, 4438 (2011).CrossRefGoogle Scholar
  52. 52.
    J. Liu, X. Wang, Q. Peng, and Y. Li, Adv. Mater. 17, 764 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mahima Ranjan Das
    • 1
  • Ayan Mukherjee
    • 3
  • Payel Maiti
    • 4
  • Sachindranath Das
    • 2
  • Partha Mitra
    • 1
    Email author
  1. 1.Department of PhysicsThe University of BurdwanBurdwanIndia
  2. 2.Department of Instrumentation ScienceJadavpur UniversityKolkataIndia
  3. 3.Department of PhysicsRRS CollegeMokama, PatnaIndia
  4. 4.Advanced Mechanical and Materials Characterization DivisionCSIR-Central Glass and Ceramic Research Institute (CGCRI)KolkataIndia

Personalised recommendations