Fabrication of Monodisperse Ba0.80Sr0.20Zr0.10Ti0.90O3@mSiO2 Particles and Fine-Grained Ceramic with Mesoporous SiO2 Coating for Enhanced Energy Storage Properties

  • Rong MaEmail author
  • Bin Cui
  • Dengwei Hu
  • Yan Wang


Monodisperse submicron Ba0.8Sr0.2Zr0.1Ti0.9O3 (BSZT) particles have been prepared using an aqueous phase method. Cetyltrimethylammonium bromide was used as a template and surfactant to achieve a mesoporous SiO2 shell coating on the surface of the BSZT particles via tetraethoxysilane hydrolysis, resulting in BSZT@mSiO2 particles (where “m” means “mesoporous”) with high dispersibility. A dense, fine-grained BSZT@mSiO2 energy-storage ceramic (with grain size ≤ 280 nm) was obtained by sintering in air at 1050°C for 2 h. The maximum dielectric constant and energy storage density of the BSZT@mSiO2 ceramics were 782 and 0.27 J/cm3, respectively, at room temperature. The mesoporous SiO2 shell of the BSZT@mSiO2 particles improved the dielectric constant and energy storage density of the ceramic compared with a non-mesoporous SiO2 shell. This method therefore represents an interesting approach for preparation of fine-grained energy storage ceramics.


Core–shell structure mesoporous fine-grained ceramics energy storage properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the National Natural Science Foundation of China (Grant No. 21071115), Shaanxi Province Natural Science Foundation Research Project (Grant No. 2016JZ006), Education Committee of Shaanxi Province (Grant No. 16JS112), and Shaanxi Light Optoelectronics Material Co., Ltd. (Grant No. 2015610002001920) for funding this research.


  1. 1.
    J. Liu, H. Wang, B. Shen, J. Zhai, P. Li, and Z. Pan, J. Am. Ceram. Soc. 100, 506 (2017).CrossRefGoogle Scholar
  2. 2.
    T. Mondal, B.P. Majee, T.R. Middya, and P.M. Sarun, IOP Conf. Ser. Mater. Sci. Eng. 149, 1 (2016).Google Scholar
  3. 3.
    C.E. Cristina, T.B. Maria, B. Vincenzo, and M. Liliana, J. Appl. Phys. 110, 1 (2011).Google Scholar
  4. 4.
    E.P. Gorzkowski, M.J. Pan, B. Bender, and C.C.M. Wu, J. Electroceram. 18, 269 (2007).CrossRefGoogle Scholar
  5. 5.
    X.R. Wang, Y. Zhang, X.Z. Song, Z.B. Yuan, T. Ma, Q. Zhang, C.S. Deng, and T.X. Liang, J. Eur. Ceram. Soc. 32, 559 (2012).CrossRefGoogle Scholar
  6. 6.
    Z. Ling, J. Zhai, and Y. Xi, Mater. Res. Bull. 44, 1058 (2009).CrossRefGoogle Scholar
  7. 7.
    Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, and H. Hao, J. Eur. Ceram. Soc. 34, 1209 (2014).CrossRefGoogle Scholar
  8. 8.
    B.B. Liu, X.H. Wang, Q.C. Zhao, and L.T. Li, J. Am. Ceram. Soc. 98, 2641 (2015).CrossRefGoogle Scholar
  9. 9.
    L.W. Wu, X.H. Wang, and L.T. Li, J. Alloys Compd. 688, 113 (2016).CrossRefGoogle Scholar
  10. 10.
    C.H. Jiang, M. Ichihara, I. Honma, and H. Zhou, Electrochim. Acta 52, 6470 (2007).CrossRefGoogle Scholar
  11. 11.
    Z. Chen and G. Lian, Mater. Res. Bull. 42, 1657 (2007).CrossRefGoogle Scholar
  12. 12.
    H. Zhang, N. Du, J.B. Wu, X.Y. Ma, D. Yang, X.B. Zhang, and Z.Q. Yang, Mater. Sci. Eng. B 141, 76 (2007).CrossRefGoogle Scholar
  13. 13.
    L.W. Chu, K.N. Prakash, M.T. Tsai, and I.N. Lin, J. Eur. Ceram. Soc. 28, 1205 (2008).CrossRefGoogle Scholar
  14. 14.
    H.F. Shao, Y.B. Zhang, X.F. Qian, J. Yin, and Z.K. Zhu, Mater. Lett. 59, 3507 (2005).CrossRefGoogle Scholar
  15. 15.
    X.D. Huang, L. Zhou, C.Z. Yu, and D.Y. Zhao, J. Mater. Chem. 22, 11523 (2012).CrossRefGoogle Scholar
  16. 16.
    J.P. Yang, D.K. Shen, L. Zhou, W. Li, X.M. Li, C. Yao, and R. Wang, Chem. Mater. 25, 3030 (2013).CrossRefGoogle Scholar
  17. 17.
    J. Wang, S.L. Jiang, D. Jiang, J.J. Tian, Y.L. Li, and Y. Wang, Ceram. Int. 38, 5853 (2012).CrossRefGoogle Scholar
  18. 18.
    Z.B. Shen, X.H. Wang, B.C. Luo, and L.T. Li, J. Mater. Chem. A 3, 18146 (2015).CrossRefGoogle Scholar
  19. 19.
    S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, and Q.X. Liu, Scr. Mater. 61, 68 (2009).CrossRefGoogle Scholar
  20. 20.
    M.M. Shirolkar, R. Das, T. Maity, P. Poddar, and S.K. Kulkarni, J. Phys. Chem. C 116, 19503 (2012).CrossRefGoogle Scholar
  21. 21.
    M. Zhang, K. Fang, M. Lin, B. Hou, L. Zhong, and Y. Zhu, J. Phys. Chem. C 117, 21529 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet, A. Brisson, and M. Maglione, Chem. Mater. 17, 4530 (2005).CrossRefGoogle Scholar
  23. 23.
    Y.C. Zhang, X.H. Wang, J.Y. Kim, J.R. Kim, K.H. Hur, and L.T. Li, J. Am. Ceram. Soc. 96, 2163 (2013).CrossRefGoogle Scholar
  24. 24.
    J.C. Chen, R.Y. Zhang, L. Han, B. Tu, and D.Y. Zhao, Nano. Res. 6, 871 (2013).CrossRefGoogle Scholar
  25. 25.
    A.V. Kimmel, J. Íñiguez, M.G. Cain, and P.V. Sushko, J. Phys. Chem. Lett. 4, 333 (2013).CrossRefGoogle Scholar
  26. 26.
    A. Mejdoubi and C. Brosseau, Phys. Rev. B 74, 2952 (2006).CrossRefGoogle Scholar
  27. 27.
    P. Gao, H.M. Ji, Q.Q. Jia, and X.L. Li, J. Alloys Compd. 527, 90 (2012).CrossRefGoogle Scholar
  28. 28.
    P.V. Divya and V. Kumar, J. Am. Ceram. Soc. 90, 472 (2007).CrossRefGoogle Scholar
  29. 29.
    Z.P. Chang and A.S. Bhalla, Mater. Lett. 8, 418 (1989).CrossRefGoogle Scholar
  30. 30.
    D. Zhang, T.W. Button, V.O. Sherman, A.K. Tagantsev, T. Price, and D. Iddles, J. Eur. Ceram. Soc. 30, 407 (2010).CrossRefGoogle Scholar
  31. 31.
    Y.H. Huang, Y.J. Wu, B. Liu, T.N. Yang, J.J. Wang, J. Li, L.Q. Chen, and X.M. Chen, J. Mater. Chem. A 6, 4477 (2018).CrossRefGoogle Scholar
  32. 32.
    M. Cernea, B.S. Vasile, A. Boni, and A. Iuga, J. Alloys Compd. 587, 553 (2014).CrossRefGoogle Scholar
  33. 33.
    G.J. Wilson, A.S. Matijasevich, D.R. Mitchell, J.C. Schulz, and G.D. Will, Langmuir 22, 2016 (2006).CrossRefGoogle Scholar
  34. 34.
    L.W. Wu, X.H. Wang, H.L. Gong, Y.N. Hao, Z.B. Shen, and L.T. Li, J. Mater. Chem. C 3, 750 (2015).CrossRefGoogle Scholar
  35. 35.
    Y. Liu, B. Cui, R. Ma, M.Q. Shangguan, X.T. Zhao, S.H. Wang, Q.Y. Li, and Y.Y. Wang, J. Am. Ceram. Soc. 99, 1664 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi ProvinceBaoji University of Arts and SciencesBaojiPeople’s Republic of China
  2. 2.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials ScienceNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations