Advertisement

Facile Preparation of a ZnO/SnO2-Based Gas Sensor Array by Inkjet Printing for Gas Analysis with BPNN

  • Mingyue Peng
  • Dawu Lv
  • Dan Xiong
  • Wenfeng ShenEmail author
  • Weijie Song
  • Ruiqin TanEmail author
Article
  • 2 Downloads

Abstract

A gas sensor array based on ZnO/SnO2 thin films has been designed and fabricated to recognize and quantify various kinds gases, such as ethanol, CO, NOx, and SO2, in combination with a backpropagation neural network (BPNN). Inkjet printing was adopted for facile preparation of the ZnO/SnO2-based thin sensing films with different metal additives due to its convenient control of composition, structure, and patterning. Precursor inks were synthesized using the sol–gel method. BPNN was applied to identify the gas species and estimate their concentration. Simulation results demonstrated that the gas sensor array could successfully identify the target gases, with overall prediction accuracy of the BPNN of 93%. This work shows that the combination of inkjet printing to prepare a thin-film gas sensor array with a BPNN is a convenient, low-cost, and efficient approach for qualitative and quantitative analysis of mixed gases.

Keywords

Inkjet printing gas sensor array ZnO/SnO2-based backpropagation neural network gas analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work has been supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY15B050003), the Ningbo Natural Science Foundation (No. 2017A610063), and the K.C. Wong Magna Fund in Ningbo University.

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11664_2019_6938_MOESM1_ESM.pdf (242 kb)
Supplementary material 1 (PDF 242 kb)

References

  1. 1.
    M. Choudhary, V.N. Mishra, and R. Dwivedi, J. Electron. Mater. 42, 2793 (2013).Google Scholar
  2. 2.
    W. Xu, L. Xia, J.G. Ju, P. Xi, B.W. Cheng, and Y.X. Liang, J. Sol-Gel Sci. Technol. 78, 353 (2016).Google Scholar
  3. 3.
    S.W. Lee, W. Lee, Y. Hong, G. Lee, and D.S. Yoon, Sens. Actuators B Chem. 255, 1788 (2017).Google Scholar
  4. 4.
    W. Yuan, L. Huang, Q. Zhou, and G. Shi, ACS Appl. Mater. Interfaces 6, 17003 (2014).Google Scholar
  5. 5.
    A. Lv, Y. Pan, and L. Chi, Sensors 17, 213 (2017).Google Scholar
  6. 6.
    S. Kumar, V. Pavelyev, P. Mishra, and N. Tripathi, Sens. Actuators A Phys. 283, 174 (2018).Google Scholar
  7. 7.
    Z. Xiao, L.B. Kong, X. Li, S. Yu, X. Li, Y. Jiang, Z. Yao, S. Ye, C. Wang, T. Zhang, K. Zhou, and S. Li, Sens. Actuators B Chem. 274, 235 (2018).Google Scholar
  8. 8.
    X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, Sensors 12, 9635 (2012).Google Scholar
  9. 9.
    P.L. Maout, J.L. Wojkiewicz, N. Redon, C. Lahuec, F. Seguin, L. Dupont, S. Mikhaylov, Y. Noskov, N. Ogurtsov, and A. Pud, Sens. Actuators B Chem. 274, 616 (2018).Google Scholar
  10. 10.
    J.P. Cheng, J. Wang, Q.Q. Li, H.G. Liu, and Y. Li, J. Ind. Eng. Chem. 44, 1 (2016).Google Scholar
  11. 11.
    L. Zhu and W. Zeng, Sens. Actuators A Phys. 267, 242 (2017).Google Scholar
  12. 12.
    X. Zhou, X. Cheng, Y. Zhu, A.A. Elzatahry, A. Alghamdi, Y. Deng, and D. Zhao, Chin. Chem. Lett. 29, 405 (2017).Google Scholar
  13. 13.
    T.A. Emadi, C. Shafai, M.S. Freund, D.J. Thomson, D.S. Jayas, and N.D.G. White, Development of a polymer-based gas sensor-humidity and CO2 sensitivity, in: Proceedings of the 2nd Microsystems and Nanoelectronics Research Conference (MNRC), Ottawa, ON, Canada, pp. 112–115 (2009).Google Scholar
  14. 14.
    J.L. Wojkiewicz, V.N. Bliznyuk, S. Carquigny, N. Elkamchi, N. Redon, T. Lasri, A.A. Pud, and S. Reynaud, Sens. Actuators B Chem. 160, 1394 (2011).Google Scholar
  15. 15.
    B. Yoon, H. Shin, O. Yarimaga, D.Y. Ham, J. Kim, I.S. Park, and J.M. Kim, J. Mater. Chem. B 22, 8680 (2012).Google Scholar
  16. 16.
    V. Kumar, V.N. Mishra, R. Dwivedi, and R.R. Das, IEEE Sens. J. 15, 1252 (2015).Google Scholar
  17. 17.
    N. Han, L.Y. Chai, Q. Wang, Y.J. Tian, P.Y. Deng, and Y.F. Chen, Sens. Actuators B Chem. 147, 525 (2010).Google Scholar
  18. 18.
    S.J. Choi, W.H. Ryu, S.J. Kim, H.J. Cho, and I.D. Kim, J. Mater. Chem. 2, 7160 (2014).Google Scholar
  19. 19.
    V. Krivetsky, A. Ponzoni, E. Comini, S. Badalyan, M. Rumyantseva, and A. Gaskov, Electroanalysis 22, 2809 (2010).Google Scholar
  20. 20.
    S. Sarkar, P.K. Biswas, and S. Jana, J. Sol-Gel Sci. Technol. 6, 577 (2012).Google Scholar
  21. 21.
    T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, and R. Spinicci, Sens. Actuators B Chem. 221, 1137 (2015).Google Scholar
  22. 22.
    F. Bayata, B. Saruhan-Brings, and M. Urgen, Sens. Actuators B Chem. 204, 109 (2014).Google Scholar
  23. 23.
    F.E. Annanouch, Z. Haddi, S. Vallejos, P. Umek, P. Guttmann, and C. Bittencourt, ACS Appl. Mater. Interfaces 7, 6842 (2015).Google Scholar
  24. 24.
    R. Dhahri, M. Hjiri, L. El Mir, A. Bonavita, D. Iannazzo, and S.G. Leonardi, Appl. Surf. Sci. 355, 1321 (2015).Google Scholar
  25. 25.
    D.X. Ju, H.Y. Xu, Z.W. Qiu, Z.C. Zhang, O. Xu, and J. Zhang, ACS Appl. Mater. Interfaces 7, 19163 (2015).Google Scholar
  26. 26.
    I.H. Kadhim and H.A. Hassan, J. Mater. Sci. Mater. Electron. 27, 4356 (2016).Google Scholar
  27. 27.
    W.F. Shen, Sens. Actuators B Chem. 166, 110 (2012).Google Scholar
  28. 28.
    M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour, Adv. Mater. 22, 673 (2010).Google Scholar
  29. 29.
    Q.S. Chen, Z. Hui, J.W. Zhao, and Q.Q. Yang, LWT Food Sci. Technol. 57, 502 (2014).Google Scholar
  30. 30.
    M. Jaqueline, E.M. Barros, and J.S. Barbeira, Energy Fuel. 28, 4355 (2014).Google Scholar
  31. 31.
    M.H. Shi, B. Amine, and B.B. Sofiane, A real-time architecture of SOC selective gas sensor array using KNN based on the dynamic slope and the steady state response, in Proceedings of 4th IEEE International Workshop on System-on-Chip for Real-Time Applications, Banff, Alta., Canada, pp. 29–32 (2004).Google Scholar
  32. 32.
    B.T. Nukala, N. Shibuya, A. Rodriguez, T. Nguyen, and S. Zupancic, Open J. Appl. Biosens. 3, 29 (2014).Google Scholar
  33. 33.
    Y.S. Hu, H.J. Lee, S.H. Kim, and M.H. Yun, Sens. Actuators B Chem. 181, 424 (2013).Google Scholar
  34. 34.
    Z.M. Du, B. Fan, J.L. Chi, and X.Q. Jin, Energy Build. 72, 157 (2014).Google Scholar
  35. 35.
    D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Nature 323, 533 (1986).Google Scholar
  36. 36.
    W.F. Shen, Y. Zhao, and C. Zhang, Thin Solid Films 483, 382 (2005).Google Scholar
  37. 37.
    R.V. Hagen, M. Sneha, and S. Mathur, J. Am. Ceram. Soc. 97, 1035 (2014).Google Scholar
  38. 38.
    L.Y. Chen, B.S. Li, G.J. Zhou, D.Q. Li, and C.C. Liu, Sens. Actuators B Chem. 134, 360 (2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingboChina
  2. 2.Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingboChina

Personalised recommendations