A Nondestructive Method for Determining Fiber Content and Fiber Ratio in Concretes Using a Metamaterial Sensor Based on a V-Shaped Resonator

  • O. Akgol
  • E. Unal
  • M. Bağmancı
  • M. KaraaslanEmail author
  • U. K. Sevim
  • M. Öztürk
  • A. Bhadauria


A micro sensor based on a V-shaped resonator (VSR) is implemented for the purpose of determining fiber content and ratio in construction materials as a nondestructive method. Concrete is investigated as the construction material in the study. First, electrical properties of concretes reinforced by different fiber types and ratios are investigated using the Nicolson-Ross-Weir technique. These values are used to design a nondestructive sensor based on microwave transmission line methods. At the resonance frequency, the VSR has a dense electric field. Construction material which is positioned within range of the VSR can change the distribution of the electric field, thus affecting the resonance response and transmission magnitude in the operating frequency. Since construction materials having various contents have different complex dielectric permittivity and loss tangent values, the resonance frequency, transmission magnitude and bandwidth of VSR shift correspondingly. Alterations in the resonance frequency and magnitude of transmission values which are related to the permittivity of the construction materials enable us to detect characteristics of the content in construction materials. The proposed technique is not only capable of sensing the type of content in the construction material which is positioned within range of the VSR, but it is also capable of determining the percentage of this content. Results show that the proposed microwave-based VSR sensor provides a cost-efficient and nondestructive solution for sensing the type and percentage of the contents in fiber-reinforced concretes.


Nondestructive readout resonators computation theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Abbas, Y.K. Yeow, A.H. Shaari, K. Khalid, J. Hassan, and E. Saion, IEEE Sens. J. 5, 1281 (2005).CrossRefGoogle Scholar
  2. 2.
    L. Yang, N. Bowler, and D.B. Johnson, IEEE Sens. J. 11, 5 (2011).CrossRefGoogle Scholar
  3. 3.
    C.L. Yang, C.S. Lee, K.W. Chen, and K.Z. Chen, IEEE Trans. Microw. Theory Technol. 64, 247 (2016).CrossRefGoogle Scholar
  4. 4.
    L. Chieh-Sen and C.L. Yang, IEEE Sens. J. 14, 695 (2014).CrossRefGoogle Scholar
  5. 5.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).CrossRefGoogle Scholar
  6. 6.
    J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).CrossRefGoogle Scholar
  7. 7.
    J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999).CrossRefGoogle Scholar
  8. 8.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).CrossRefGoogle Scholar
  9. 9.
    S. Devadithya, A. Pedross-Engel, C.M. Watts, N.I. Landy, T. Driscoll, and M.S. Reynolds, IEEE Trans. Microw. Theory Technol. 65, 5096 (2017).CrossRefGoogle Scholar
  10. 10.
    T. Ali and B. Rajashekhar, Microw. Opt. Technol. Lett. J. 59, 1000 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Bağmancı, M. Karaaslan, O. Altıntaş, F. Karadağ, E. Tetik, and M. Bakır, J. Microw. Power Electromagn. Energy 52, 45 (2018).CrossRefGoogle Scholar
  12. 12.
    V. Pacheco-Peña, I.V. Minin, O.V. Minin, and M. Beruete, IEEE Antennas Wirel. Propag. Lett. 16, 1460 (2017).CrossRefGoogle Scholar
  13. 13.
    W. Withayachumnankul and D. Abbott, IEEE Photon. J. 1, 99 (2008).CrossRefGoogle Scholar
  14. 14.
    M. Bakır, M. Karaaslan, O. Akgol, and C. Sabah, Opt. Quant. Electron. 49, 346 (2017).CrossRefGoogle Scholar
  15. 15.
    A.P. Saghati, J.S. Batra, J. Kameoka, and K. Entesari, IEEE Trans. Microw. Theory Technol. 65, 2558 (2017).CrossRefGoogle Scholar
  16. 16.
    B. Kapilevich and B. Litvak, IEEE Sens. J. 11, 2611 (2011).CrossRefGoogle Scholar
  17. 17.
    I.E. Carranza, J.P. Grant, J. Gough, and D. Cumming, IEEE J. Sel. Top. Quant. 23, 1 (2017).CrossRefGoogle Scholar
  18. 18.
    K. Saxena and K.S. Daya, Integr. Ferroelectr. 184, 50 (2017).CrossRefGoogle Scholar
  19. 19.
    D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, Nanoscale Res. Lett. 11, 483 (2016).CrossRefGoogle Scholar
  20. 20.
    M. Bakir, M. Karaaslan, F. Dincer, O. Akgol, and C. Sabah, Int. J. Mod. Phys. B. 30, 1650133 (2016).CrossRefGoogle Scholar
  21. 21.
    P. Vélez, L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martín, IEEE Sens. J. 17, 6589 (2017).CrossRefGoogle Scholar
  22. 22.
    G. Galindo-Romera, F.J. Herraiz-Martínez, M. Gil, J.J. Martínez-Martínez, and D. Segovia-Vargas, IEEE Sens. J 16, 3587 (2016).CrossRefGoogle Scholar
  23. 23.
    R.Y. Gerasimov, G.N. Fadeev, Y.V. Gerasimov, and E.A. Kondrakova, J. Phys. Conf. Ser. 731, 012005 (2016).CrossRefGoogle Scholar
  24. 24.
    J. Helander, A. Ericsson, M. Gustafsson, T. Martin, D. Sjöberg, and C. Larsson, IEEE Trans. Antennas Propag. 65, 5523 (2017).CrossRefGoogle Scholar
  25. 25.
    K. Sasaki, T. Katagiri, N. Yusa, and H. Hashizume, Mater. Trans. 58, 692 (2017).CrossRefGoogle Scholar
  26. 26.
    A. Beglarigale and H. Yazıcı, Const. B. Mat. 75, 255 (2015).CrossRefGoogle Scholar
  27. 27.
    P.H. Bischoff, ACI Struct. J. 114, 1067 (2017).Google Scholar
  28. 28.
    F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, Opt. Eng. 53, 107101 (2015).CrossRefGoogle Scholar
  29. 29.
    F. Karadağ, İ. Çömez, F. DinÇer, M. Bakır, and M. Karaaslan, Appl. Comput. Electron. 31, 8 (2016).Google Scholar
  30. 30.
    P.S. Neelakanta, Electron. Lett. 25, 800 (1989).CrossRefGoogle Scholar
  31. 31.
    M. Gil, J. Bonache, J. Selga, J. García-García, and F. Martin, IEEE Microw. Wirel. Compon. Lett. 17, 97 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • O. Akgol
    • 1
  • E. Unal
    • 1
  • M. Bağmancı
    • 1
  • M. Karaaslan
    • 1
    Email author
  • U. K. Sevim
    • 1
  • M. Öztürk
    • 1
  • A. Bhadauria
    • 2
  1. 1.Iskenderun Technical UniversityHatayTurkey
  2. 2.Central Electronics Engineering Research Institute (CEERI)PilaniIndia

Personalised recommendations