Advertisement

Investigation of Effects of Diameter, Doping and Vacancy Defects on the Band Structure and Transport Properties of Silicon Nanowires for Potential Applications in Field-Effect Transistors

  • Muhammad IrfanEmail author
  • Abdul SattarEmail author
  • Azmat Iqbal
  • Muhammad Fiaz Khan
  • Raja Junaid Amjad
  • Hasan Mahmood
  • Hamid Latif
  • Nosheen Akbar
  • Farah Alvi
  • Ishrat Sultana
Article
  • 10 Downloads

Abstract

Silicon nanowires (SiNWs) with unique band structure and transport properties are considered potential candidates for future nanoelectronics devices such as field-effect transistors (FETs). We present a model of a SiNW-FET comprising \(\langle100\rangle\) silicon atomic wires with a cylindrical-shaped metallic gate wrapped around the wires. For this purpose, we report on the energy band structure and density of states of SiNWs of diameters 5.93 Å, 9.71 Å and 13.55 Å with \(\langle100\rangle\) cleavage orientation by employing generalized gradient approximation and meta-generalized gradient approximation as well as the semi-empirical extended-Huckel model. Moreover, the transmission and transport properties of doped and undoped SiNWs of diameter 5.93 Å with and without vacancy defects are explored using a non-equilibrium green function approach with self-consistent calculations. The corresponding IV characteristics of the proposed cylindrical-shaped metallic-gate SiNW-FET under a specific gate voltage are presented. Our results show that the undoped SiNWs with vacancy defects on the surface are more suitable candidates for nanoelectronic device applications such as FETs in contrast to their counterparts with vacancies at the center.

Keywords

Silicon nanowires field-effect transistor vacancy defects density-functional-theory extended-Huckel model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors would like to acknowledge Higher Education commission Pakistan for providing research Grant No. 5336/Federal/NRPU/R&D/HEC/2016.

References

  1. 1.
    A. San Paulo, N. Arellano, J.A. Plaza, R. He, C. Carraro, R. Maboudian, R.T. Howe, J. Bokor, and P. Yang, Nano Lett. 1100, 7 (2007).Google Scholar
  2. 2.
    ITRS, The International Technology Roadmap for Semiconductors (ITRS). 2016.2.Google Scholar
  3. 3.
    H.N. Khan, D.A. Hounshell, and E.R. Fuchs, Nat. Electron. 1, 14 (2018).CrossRefGoogle Scholar
  4. 4.
    S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, Nat. Commun. 5, 3132 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Sattar, R.J. Amjad, S. Yasmeen, H. Javed, H. Latif, H. Mahmood, A. Iqbal, A. Usman, M.N. Akhtar, and S.N. Khan, Phys. E Low Dimens. Syst. Nanostruct. 79, 8 (2016).CrossRefGoogle Scholar
  6. 6.
    R.-P. Wang, G.-W. Zhou, Y.-L. Liu, S.-H. Pan, H.-Z. Zhang, D.-P. Yu, and Z. Zhang, Phys. Rev. B. 61, 16827 (2000).CrossRefGoogle Scholar
  7. 7.
    A.I. Hochbaum, R. Fan, R. He, and P. Yang, Nano Lett. 5, 457 (2005).CrossRefGoogle Scholar
  8. 8.
    B. Marsen and K. Sattler, Phys. Rev. B. 60, 11593 (1999).CrossRefGoogle Scholar
  9. 9.
    N. Wang, Y. Tang, Y. Zhang, C. Lee, I. Bello, and S. Lee, Chem. Phys. Lett. 299, 237 (1999).CrossRefGoogle Scholar
  10. 10.
    J.M. Méndez-Reyes, B.M. Monroy, M. Bizarro, F. Güell, A. Martínez, and E. Ramos, Phys. Chem. Chem. Phys. 17, 21525 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Nolan, S. O’Callaghan, G. Fagas, J.C. Greer, and T. Frauenheim, Nano Lett. 7, 34 (2007).CrossRefGoogle Scholar
  12. 12.
    Y.M. Brovman, J.P. Small, Y. Hu, Y. Fang, C.M. Lieber, and P. Kim, J. Appl. Phys. 119, 234304 (2016).CrossRefGoogle Scholar
  13. 13.
    P. Yang, A. Majumdar, A.I. Hochbaum, R. Chen, and R.D. Delgado, (Google Patents: 2015).Google Scholar
  14. 14.
    T. Markussen, A.-P. Jauho, and M. Brandbyge, Phys. Rev. 79, 035415 (2009).CrossRefGoogle Scholar
  15. 15.
    M.H. Moaiyeri, A. Rahi, F. Sharifi, and K. Navi, J. Appl. Res. Technol. 15, 233 (2017).CrossRefGoogle Scholar
  16. 16.
    M.H. Moaiyeri, M. Nasiri, and N. Khastoo, JESTECH 19, 271 (2016).Google Scholar
  17. 17.
    A.M. Ionescu, In 2017 17th International Workshop on Junction Technology (IWJT), (IEEE: 2017), pp 1–6.Google Scholar
  18. 18.
    X.Y. Kong and Z.L. Wang, Nano Lett. 3, 1625 (2003).CrossRefGoogle Scholar
  19. 19.
    W.H. Lim, A. Hamzah, M.T. Ahmadi, and R. Ismail, Phys. E Low Dimens. Syst. Nanostruct. 102, 33 (2018).CrossRefGoogle Scholar
  20. 20.
    S.W. Eaton, M. Lai, N.A. Gibson, A.B. Wong, L. Dou, J. Ma, L.-W. Wang, S.R. Leone, and P. Yang, PNAS 113, 1993 (2016).CrossRefGoogle Scholar
  21. 21.
    Y. Li, S. Wang, Q. Wang, and M. Xing, Carbon 129, 504 (2018).CrossRefGoogle Scholar
  22. 22.
    S. Kawai, A. Benassi, E. Gnecco, H. Söde, R. Pawlak, X. Feng, K. Müllen, D. Passerone, C.A. Pignedoli, and P. Ruffieux, Science 351, 957 (2016).CrossRefGoogle Scholar
  23. 23.
    X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L. Wang, Nano Lett. 6, 2768 (2006).CrossRefGoogle Scholar
  24. 24.
    M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).CrossRefGoogle Scholar
  25. 25.
    Q. A. S. Atomistix ToolKit version 2016.01.Google Scholar
  26. 26.
    W. Lu, V. Meunier, and J. Bernholc, Phys. Rev. Lett. 95, 206805 (2005).CrossRefGoogle Scholar
  27. 27.
    D. Kienle, J.I. Cerda, and A.W. Ghosh, J. Appl. Phys. 100, 043714 (2006).CrossRefGoogle Scholar
  28. 28.
    T.-L. Chan, C.V. Ciobanu, F.-C. Chuang, N. Lu, C.-Z. Wang, and K.-M. Ho, Nano Lett. 6, 277 (2006).CrossRefGoogle Scholar
  29. 29.
    G.-Y. Huang, C.-Y. Wang, and J.-T. Wang, Solid State Commun. 149, 199 (2009).CrossRefGoogle Scholar
  30. 30.
    D.C. Langreth and M. Mehl, Phys. Rev. B 28, 1809 (1983).CrossRefGoogle Scholar
  31. 31.
    Y. Zhao and D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008).CrossRefGoogle Scholar
  32. 32.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).CrossRefGoogle Scholar
  33. 33.
    M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).CrossRefGoogle Scholar
  34. 34.
    K. Stokbro, D.E. Petersen, S. Smidstrup, A. Blom, M. Ipsen, and K. Kaasbjerg, Phys. Rev. B 82, 075420 (2010).CrossRefGoogle Scholar
  35. 35.
    K. Stokbro, J. Taylor, M. Brandbyge, and H. Guo, In Introducing Molecular Electronics, (Springer: 2006), pp 117– 151.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Muhammad Irfan
    • 1
    Email author
  • Abdul Sattar
    • 1
    Email author
  • Azmat Iqbal
    • 2
  • Muhammad Fiaz Khan
    • 3
  • Raja Junaid Amjad
    • 1
  • Hasan Mahmood
    • 1
  • Hamid Latif
    • 4
  • Nosheen Akbar
    • 1
  • Farah Alvi
    • 1
  • Ishrat Sultana
    • 1
  1. 1.Department of PhysicsCOMSATS University IslamabadLahorePakistan
  2. 2.Department of PhysicsThe University of LahoreLahorePakistan
  3. 3.Department of PhysicsUniversity of Engineering and Technology LahoreLahorePakistan
  4. 4.Department of PhysicsForman Christian College UniversityLahorePakistan

Personalised recommendations