Nickel Manganese Oxide Nanoparticles Based Humidity Sensors

  • Yasir Farooq
  • S. Fareed
  • M. A. RafiqEmail author
  • F. Sher


In the present work (0–20%) Mn doped NiO, (10–20%) Ni doped Mn3O4, and composite NiO/Mn3O4 nanoparticles were synthesized using the solid state reaction method. The purity of the nanoparticles was confirmed using x-ray diffraction (XRD) study. Scanning electron microscope (SEM) images confirmed the formation of irregularly shaped nanoparticles with an average diameter of 50–100 nm. Then humidity sensors based on these nanoparticles were fabricated and tested. The doping up to certain content enhanced the sensitivity, and the maximum sensitivity of 70% was observed for 10% Ni doped Mn3O4. These sensors exhibited reasonably fast response and recovery times and were better or comparable to those of similar materials. Therefore nickel/manganese oxide nanoparticles are suitable for use in fabrication of humidity sensors.


Nickel oxide manganese oxide humidity sensor nanoparticles solid state reaction method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



M. A. Rafiq acknowledges the financial support from the Higher Education Commission of Pakistan under the National Research Program for Universities (Project No. 3662).


  1. 1.
    J. Fraden, Handbook of modern sensors, 4th ed. (New York: Springer-Verlag, 2010).Google Scholar
  2. 2.
    A. A. S. Raj, R. Jayaraman, S. Rubila, D. Tiroutchelvamae, and T. V Ranganathan, in (Springer, Cham, 2014), pp. 956–961.Google Scholar
  3. 3.
    Z. Chen and C. Lu, Sens. Lett. 3, 274 (2005).CrossRefGoogle Scholar
  4. 4.
    E. Traversa, Sensors Actuators B. Chem. 23, 135 (1995).CrossRefGoogle Scholar
  5. 5.
    M. Bayhan, T. Hashemi, and A.W. Brinkman, J. Mater. Sci. 32, 6619 (1997).CrossRefGoogle Scholar
  6. 6.
    Y.-C. Yeh, T.-Y. Tseng, and D.-A. Chang, J. Am. Ceram. Soc. 737, 1992 (1990).CrossRefGoogle Scholar
  7. 7.
    S. Pokhrel and K.S. Nagaraja, Phys. Status Solidi 194, 140 (2002).CrossRefGoogle Scholar
  8. 8.
    K. Kalantar-zade and B. Fry, Nanotechnology-Enabled Sensors (Springer, 2008).Google Scholar
  9. 9.
    M. Usman, K. Rasool, S.S. Batool, Z. Imran, M. Ahmad, H. Jamil, M.A. Rafiq, and M.M. Hasan, J. Mater. Sci. Technol. 30, 748 (2014).CrossRefGoogle Scholar
  10. 10.
    S.S. Batool, Z. Imran, M. Israr Qadir, M. Usman, H. Jamil, M. A. Rafiq, M. M. Hassan, and M. Willander, J. Mater. Sci. Technol. 29, 411 (2013).Google Scholar
  11. 11.
    S.S. Batool, Z. Imran, M. Israr-Qadir, S. Jamil-Rana, M. Usman, H. Jamil, M.A. Rafiq, M.M. Hasan, O. Nur, and M. Willander, Vacuum 87, 1 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Jamil, S.S. Batool, Z. Imran, M. Usman, M.A. Rafiq, M. Willander, and M.M. Hassan, Ceram. Int. 38, 2437 (2012).CrossRefGoogle Scholar
  13. 13.
    D. Toloman, A. Popa, M. Stan, C. Socaci, A.R. Biris, G. Katona, F. Tudorache, I. Petrila, and F. Iacomi, Appl. Surf. Sci. 402, 410 (2017).CrossRefGoogle Scholar
  14. 14.
    S. Harbeck, A. Szatvanyi, N. Barsan, U. Weimar, and V. Hoffmann, Thin Solid Films 436, 76 (2003).CrossRefGoogle Scholar
  15. 15.
    P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, and F. Tudorache, Sensors Actuators B Chem. 222, 1024 (2016).CrossRefGoogle Scholar
  16. 16.
    P.W. Winston and D.H. Bates, Ecology 41, 232 (1960).CrossRefGoogle Scholar
  17. 17.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).CrossRefGoogle Scholar
  18. 18.
    S. Layek and H.C. Verma, J. Magn. Magn. Mater. 397, 73 (2016).CrossRefGoogle Scholar
  19. 19.
    R. Ponnusamy, S.C. Selvaraj, M. Ramachandran, P. Murugan, P.M.G. Nambissan, and D. Sivasubramanian, Cryst. Growth Des. 16, 3656 (2016).CrossRefGoogle Scholar
  20. 20.
    N. Agmon, Chem. Phys. Lett. 244, 456 (1995).CrossRefGoogle Scholar
  21. 21.
    T. Nitta, Z. Terada, and S. Hayakawa, J. Am. Ceram. Soc. 63, 295 (1980).CrossRefGoogle Scholar
  22. 22.
    A. Sharma, Y. Kumar, K. Mazumder, A. K. Rana, and P. M. Shirage, New J. Chem. 42 (2018).Google Scholar
  23. 23.
    S. Pokhrel and K.S. Nagaraja, Sensors Actuators B Chem. 92, 144 (2003).CrossRefGoogle Scholar
  24. 24.
    C.N. Xu, K. Miyazaki, and T. Watanabe, Sensors Actuators B Chem. 46, 87 (1998).CrossRefGoogle Scholar
  25. 25.
    V. Jeseentharani, B. Jeyaraj, J. Pragasam, A. Dayalan, and K. Seetharamaiah Nagaraja, Sensors Transducers J. 113, 48 (2010).Google Scholar
  26. 26.
    H.D. Chandrashekara, B. Angadi, Y.T. Ravikiran, P. Poornima, R. Shashidhar, and L.C.S. Murthy, in AIP Conf. Proc. (2016), p. 020615.Google Scholar
  27. 27.
    M. Parthibavarman, V. Hariharan, and C. Sekar, Mater. Sci. Eng. C 31, 840 (2011).CrossRefGoogle Scholar
  28. 28.
    S.K. Shukla, S.K. Shukla, P.P. Govender, and E.S. Agorku, Microchim. Acta 183, 573 (2016).CrossRefGoogle Scholar
  29. 29.
    M. Sabarilakshmi and K. Janaki, J. Mater. Sci. Mater. Electron. 28, 5329 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Micro and Nano Devices Group, Department of Metallurgy and Materials EngineeringPakistan Institute of Engineering and Applied Sciences (PIEAS)P.O. Nilore, IslamabadPakistan
  2. 2.Department of Physics and Applied MathematicsPakistan Institute of Engineering and Applied Sciences (PIEAS)P.O. Nilore, IslamabadPakistan
  3. 3.Department of Chemistry, SSELahore University of Management SciencesLahorePakistan

Personalised recommendations