Comparative Analysis of Mixed CNTs and MWCNTs as VLSI Interconnects for Deep Sub-micron Technology Nodes

  • Karmjit Singh SandhaEmail author
  • Arvind Thakur


This research paper presents a performance analysis of the mixed carbon nanotube (CNT) as an interconnect for very large-scale integration (VLSI) circuits at deep sub-micron (DSM) technology nodes. The mixed CNT interconnect is a combination of multiwall CNTs (MWCNTs) and single-walled CNTs (SWCNTs). Using hierarchical modeling, a multiconductor circuit model is proposed for the mixed CNT bundle at global-level interconnect lengths. Due to the insertion of SWCNTs in a MWCNT interconnect, the overall density of the conducting tubes in the proposed mixed CNT interconnect structure increases, thereby decreasing the overall resistance and inductance of the mixed CNTs. The performance of the proposed mixed CNT interconnect is estimated in terms of delay and power delay product (PDP) for different technology nodes (32 nm, 22 nm, and 16 nm) at different interconnect lengths. For comparative analysis, a similar analysis is performed using MWCNT bundle interconnects. The comparative results show that there is reduction in the overall propagation delay and PDP for the proposed mixed CNTs compared to MWCNTs as the interconnect material for DSM technology nodes at global-level interconnect lengths.


Mixed CNT multiconductor circuit equivalent single-conductor circuit propagation delay power delay product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    N. Srivastava, H. Li, F. Kreupl, and K. Banerjee, IEEE Trans. Nanotechnol. 8, 542 (2009).CrossRefGoogle Scholar
  2. 2.
    K. Sandha and S. Sharma, J. Nanoelectron Optoelectron 13, 357 (2018).CrossRefGoogle Scholar
  3. 3.
    M. Nihei, D. Kondo, A. Kawabata, S. Sato, H. Shioya, and M. Sakaue, in Interconnect Technology Conference Proceedings (2005), pp. 234–236.Google Scholar
  4. 4.
    K. Singh and B. Raj, J. Comput. Electron. 14, 469 (2015).CrossRefGoogle Scholar
  5. 5.
    P.G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, Phys. Rev. Lett. 86, 3128 (2001).CrossRefGoogle Scholar
  6. 6.
    A. Naeemi and J.D. Meindl, IEEE Electron Device Lett. 27, 338 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Tang and J. Mao, IEEE Trans. Electromagn. Compat. 57, 232 (2015).CrossRefGoogle Scholar
  8. 8.
    D. Rossi, J.M. Cazeaux, C. Metra, and F. Lombardi, IEEE Trans. Nanotechnol. 6, 133 (2007).CrossRefGoogle Scholar
  9. 9.
    P. Mallick, in Conference on Communication and Signal Processing (2016), pp. 0987–0990.Google Scholar
  10. 10.
    B. Bourlon, C. Miko, L. Forro, D.C. Glattli, and A. Bachtold, Phys. Rev. Lett. 93, 176806 (2004).CrossRefGoogle Scholar
  11. 11.
    M.S. Sarto and A. Tamburrano, IEEE Trans. Nanotechnol. 9, 82 (2010).CrossRefGoogle Scholar
  12. 12.
    P. Litoria, K.S. Sandha, and A. Kansal, J. Mater. Sci. Mater. Electron. 28, 4818 (2016).CrossRefGoogle Scholar
  13. 13.
    International Technology Roadmap for Semiconductors (2013) [Online], Accessed 29 April 2018.
  14. 14.
    H. Li, W.Y. Yin, K. Banerjee, and J.F. Mao, IEEE Trans. Electron Devices 55, 1328 (2008).CrossRefGoogle Scholar
  15. 15.
    P.J. Burke, IEEE Trans. Nanotechnol. 1, 129 (2002).CrossRefGoogle Scholar
  16. 16.
    Y.G. Yoon, P. Delaney, and S.G. Louie, Phys. Rev. B 66, 073407 (2002).CrossRefGoogle Scholar
  17. 17.
    M. Tang, J. Lu, and J. Mao, in Microwave Conference Proceedings (2012), pp. 1247–1249.Google Scholar
  18. 18.
    P.L. McEuen, M.S. Fuhrer, and H. Park, IEEE Trans. Nanotechnol. 99, 78 (2002).CrossRefGoogle Scholar
  19. 19.
    B.Q. Wei, R. Vajtai, and P.M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001).CrossRefGoogle Scholar
  20. 20.
    A. Maffucci, G. Miano, and F. Villone, IEEE Trans. Adv. Packag. 31, 692 (2008).CrossRefGoogle Scholar
  21. 21.
    K. Singh and B. Raj, J. Electron. Mater. 44, 4825 (2015).CrossRefGoogle Scholar
  22. 22.
    M.R. Baklanov and K. Maex, Phys. Eng. Sci. 364, 201 (2006).CrossRefGoogle Scholar
  23. 23.
    Predictive Technology Model (PTM), Accessed 29 April 2018.

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Thapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations