Advertisement

Synthesis of MnS from Single- and Multi-Source Precursors for Photocatalytic and Battery Applications

  • Wajid Hussain
  • Hinna Malik
  • Raja Azadar Hussain
  • Hidayat Hussain
  • Ivan Robert Green
  • Shafiqullah Marwat
  • Ali Bahadur
  • Shahid Iqbal
  • Muhammad Umar Farooq
  • Hui Li
  • Amin BadshahEmail author
Article
  • 9 Downloads

Abstract

Nanomaterials have been shown to possess exclusive properties in heterogeneous catalysis as evidenced by studies dedicated to the synthesis of transition-metal-containing nanomaterials. However, the series of nanomaterials which have been synthesized are mostly oxides. A ligand, 1-(2-chloro-4-nitrophenyl)-3,3-chlorobenzoyl (Tu), has been created through which MnS nanoparticles (NPs) and nanosheets (NSs) have been successfully synthesized, initially from a single-source precursor (SS) and then from multi-source precursors, respectively. The main objective of this article was to identify the differences in the morphologies of the materials synthesized from the two different sources, with photodegradation and battery applications performed just with MnS NPs (synthesized by the SS method). A preliminary study has been carried out on the photocatalytic properties and battery applications of the recently synthesized MnS employing the SS method. MnS NPs demonstrated higher activity than their bulk sheet for the photocatalytic degradation of four different dyes, methyl violet, methylene green, methylene blue, and rhodamine B, under visible-light irradiation. More significantly, the preparation method in the present work might be applied to other metal chalcogenide nanomaterials for various new applications. More notably, battery applications have been evaluated for MnS NPs (synthesized by the SS method) by testing their electrochemical discharge/charge at voltage limits of − 0.2 to 3.2 V versus Li/Li+.

Keywords

Thiourea MnS battery applications dye degradation UV–Vis spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.K. Furdyna, J. Appl. Phys. 64, R29 (1988).CrossRefGoogle Scholar
  2. 2.
    O. Goede and W. Heimbrodt, Phys. Status Solidi B 146, 11 (1988).CrossRefGoogle Scholar
  3. 3.
    K. Hass and H. Ehrenreich, J. Cryst. Growth 86, 8 (1988).CrossRefGoogle Scholar
  4. 4.
    B. Larson, K. Hass, H. Ehrenreich, and A. Carlsson, Solid State Commun. 56, 347 (1985).CrossRefGoogle Scholar
  5. 5.
    J. Lu, P. Qi, Y. Peng, Z. Meng, Z. Yang, W. Yu, and Y. Qian, Chem. Mater. 13, 2169 (2001).CrossRefGoogle Scholar
  6. 6.
    J. Furdyna, J. Appl. Phys. 53, 7637 (1982).CrossRefGoogle Scholar
  7. 7.
    N. Brandt and V.V. Moshchalkov, Adv. Phys. 33, 193 (1984).CrossRefGoogle Scholar
  8. 8.
    R.R. Galazka, J. Cryst. Growth 72, 364 (1985).CrossRefGoogle Scholar
  9. 9.
    J. Furdyna, J. Vac. Sci. Technol. A 4, 2002 (1986).CrossRefGoogle Scholar
  10. 10.
    S. Kennedy, K. Harris, and E. Summerville, J. Solid State Chem. 31, 355 (1980).CrossRefGoogle Scholar
  11. 11.
    D. Chen, H. Quan, Z. Huang, and L. Guo, ChemElectroChem 2, 1314 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Furuseth and A. Kjekshus, Acta Chem. Scand. 19, 95 (1965).CrossRefGoogle Scholar
  13. 13.
    M. Okajima and T. Tohda, J. Cryst. Growth 117, 810 (1992).CrossRefGoogle Scholar
  14. 14.
    B. Skromme, Y. Zhang, D.J. Smith, and S. Sivananthan, Appl. Phys. Lett. 67, 2690 (1995).CrossRefGoogle Scholar
  15. 15.
    P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Liu, J. Yu, and M. Jaroniec, J. Am. Chem. Soc. 132, 11914 (2010).CrossRefGoogle Scholar
  17. 17.
    X.-H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, and X. Wang, Chem. Mater. 23, 4344 (2011).CrossRefGoogle Scholar
  18. 18.
    Y. Chen, L. Wang, G.M. Lu, X. Yao, and L. Guo, J. Mater. Chem. 21, 5134 (2011).CrossRefGoogle Scholar
  19. 19.
    G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan, G.Q. Lu, and H.-M. Cheng, J. Am. Chem. Soc. 131, 12868 (2009).CrossRefGoogle Scholar
  20. 20.
    T. Zhou, J. Hu, and J. Li, Appl. Catal. B 110, 221 (2011).CrossRefGoogle Scholar
  21. 21.
    J. Xiong, G. Cheng, Z. Lu, J. Tang, X. Yu, and R. Chen, CrystEngComm 13, 2381 (2011).CrossRefGoogle Scholar
  22. 22.
    Z. Liu, H. Bai, and D. Sun, Appl. Catal. B. 104, 234 (2011).CrossRefGoogle Scholar
  23. 23.
    S.M. Oh, S.W. Oh, C.S. Yoon, B. Scrosati, K. Amine, and Y.K. Sun, Adv. Funct. Mater. 20, 3260 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Li, L. Zhang, L. Zhang, W. Hao, H. Wang, Q. Qu, and H. Zheng, J. Power Sources 249, 311 (2014).CrossRefGoogle Scholar
  25. 25.
    T.-F. Yi, Y.-R. Zhu, X.-D. Zhu, J. Shu, C.-B. Yue, and A.-N. Zhou, Ionics 15, 779 (2009).CrossRefGoogle Scholar
  26. 26.
    K. Zaghib, M. Trudeau, A. Guerfi, J. Trottier, A. Mauger, R. Veillette, and C. Julien, J. Power Sources 204, 177 (2012).CrossRefGoogle Scholar
  27. 27.
    W. Hussain, A. Badshah, R.A. Hussain, M.A. Aleem, A. Bahadur, S. Iqbal, M.U. Farooq, and H. Ali, Mater. Chem. Phys. 194, 345 (2017).CrossRefGoogle Scholar
  28. 28.
    S.A. Bakar and C. Ribeiro, J. Mol. Catal. Chem. 412, 78 (2016).CrossRefGoogle Scholar
  29. 29.
    S.A. Bakar and C. Ribeiro, RSC Adv. 6, 36516 (2016).CrossRefGoogle Scholar
  30. 30.
    C. Avril, V. Malavergne, R. Caracas, B. Zanda, B. Reynard, E. Charon, E. Bobocioiu, F. Brunet, S. Borensztajn, and S. Pont, Meteorit. Planet. Sci. 48, 1415 (2013).CrossRefGoogle Scholar
  31. 31.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, J. Lee, and M.H. Cho, J. Mater. Chem. A 2, 637 (2014).CrossRefGoogle Scholar
  32. 32.
    S. Kansal, M. Singh, and D. Sud, J. Hazard. Mater. 141, 581 (2007).CrossRefGoogle Scholar
  33. 33.
    Y. Guo, X. Shi, J. Zhang, Q. Fang, L. Yang, F. Dong, and K. Wang, Mater. Lett. 86, 146 (2012).CrossRefGoogle Scholar
  34. 34.
    H. Gerischer, Solar Energy Conversion, ed. B.O. Seraphin (Berlin, Heidelberg: Springer, 1979), pp. 115–172.Google Scholar
  35. 35.
    G. Panthi, N.A. Barakat, K.A. Khalil, A. Yousef, K.-S. Jeon, and H.Y. Kim, Ceram. Int. 39, 1469 (2013).CrossRefGoogle Scholar
  36. 36.
    F. Zhang and S.S. Wong, Chem. Mater. 21, 4541 (2009).CrossRefGoogle Scholar
  37. 37.
    G. Lin, J. Zheng, and R. Xu, J. Phys. Chem. C 112, 7363 (2008).CrossRefGoogle Scholar
  38. 38.
    A.K. Dutta, S.K. Maji, D.N. Srivastava, A. Mondal, P. Biswas, P. Paul, and B. Adhikary, ACS Appl. Mater. Interfaces 4, 1919 (2012).CrossRefGoogle Scholar
  39. 39.
    D. Chen, H. Quan, G.S. Wang, and L. Guo, ChemPlusChem 78, 843 (2013).CrossRefGoogle Scholar
  40. 40.
    Z. Tang, N.A. Kotov, and M. Giersig, Science 297, 237 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Wajid Hussain
    • 1
  • Hinna Malik
    • 2
  • Raja Azadar Hussain
    • 2
  • Hidayat Hussain
    • 3
  • Ivan Robert Green
    • 4
  • Shafiqullah Marwat
    • 2
  • Ali Bahadur
    • 2
  • Shahid Iqbal
    • 5
  • Muhammad Umar Farooq
    • 2
  • Hui Li
    • 1
  • Amin Badshah
    • 2
    Email author
  1. 1.Key Laboratory of Cluster Sciences of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.University of NizwaBirkat Al MawzOman
  4. 4.Stellenbosch UniversityStellenboschSouth Africa
  5. 5.School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations