Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1724–1729 | Cite as

Constructing ZnO/ZnCr2O4@TiO2-NTA Nanocomposite for Photovoltaic Conversion and Photocatalytic Hydrogen Evolution

  • Li Zhang
  • Yang Huang
  • Chaohua Dai
  • Qingman Liang
  • Peng Yang
  • Haihua YangEmail author
  • Jianhui Yan
Article
  • 16 Downloads

Abstract

Nanocomposites based on TiO2 nanotube arrays (TiO2-NTA) have received increasing attention for photoconversion and photocatalytic reactions. Here, TiO2-NTA were prepared by an anodic oxidation process. ZnO and ZnCr2O4 nanoparticles were further anchored on the surface of the pre-synthesized TiO2-NTA to form a ternary ZnO/ZnCr2O4@TiO2-NTA (Zn-Cr-O@TiO2-NTA) nanocomposite by an electrochemical reduction–oxidation strategy. Compared to bare TiO2-NTA, the Zn-Cr-O@TiO2-NTA nanocomposite shows remarkably higher photovoltaic conversion efficiency (nine times greater) under visible light irradiation, and photocatalytic H2 evolution activity (2.8 times greater) under simulated sunlight irradiation, respectively. The construction of ternary nanocomposite is beneficial to enhancing the absorption of simulated sunlight irradiation. Moreover, the Type-II semiconductor heterojunction facilitates separation of electron–hole pairs and interfacial charge transport. As a result, improvement of photoconversion efficiency has been obtained. This work may have fundamental importance to designing complex and efficient photoelectrodes for energy-harvesting applications, including photovoltaic solar cells and water splitting.

Keywords

ZnO ZnCr2O4 TiO2 nanotube arrays nanocomposite photovoltaic conversion photocatalytic hydrogen evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge the financial assistance of the Natural Science Foundation of Hunan Provincial of China (No. 2017JJ2108), and the Scientific Research Foundation of Hunan Provincial Education Department of China (No. 15A076).

References

  1. 1.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefGoogle Scholar
  2. 2.
    S. Dongying, Z. Rui, S. Ming-Jun, C. Xinrui, S. Chun-Xiao, C. Chao-Jie, L. Chun-Sen, Z. Junwei, and D. Miao, Angew. Chem. Int. Ed. 56, 14637 (2017).CrossRefGoogle Scholar
  3. 3.
    T. Yi, G.D.A.F. Pelayo, D. Cao-Thang, F. Gael, B. Marcella, L. Jun, L. Min, Z. Xixiang, Z. Xueli, K.M. Golam, H. Sjoerd, S. David, S. Hoogland, and F. Andrea, Adv. Mater. 29, 1701165 (2017).CrossRefGoogle Scholar
  4. 4.
    J.M. Macak, M. Zlamal, J. Krysa, and P. Schmuki, Small 3, 300 (2007).CrossRefGoogle Scholar
  5. 5.
    L.X. Zheng, S.C. Han, H. Liu, P.P. Yu, and X.S. Fang, Small 12, 1527 (2016).CrossRefGoogle Scholar
  6. 6.
    M.M. Momeni, Y. Ghayeb, and Z. Ghonchegi, Ceram. Int. 41, 8735 (2015).CrossRefGoogle Scholar
  7. 7.
    M. Ye, J. Gong, Y. Lai, C. Lin, and Z. Lin, J. Am. Chem. Soc. 134, 15720 (2012).CrossRefGoogle Scholar
  8. 8.
    X. Yang, W. Liu, and P. Ren, Phys. E 83, 322 (2016).CrossRefGoogle Scholar
  9. 9.
    Q. Cheng, X. Deng, H. Zhang, R. Guo, Y. Cui, Q. Ma, X. Zhang, X. Cheng, M. Xie, and B. Li, Sep. Purif. Technol. 193, 255 (2018).CrossRefGoogle Scholar
  10. 10.
    T.-D. Dang and T.T.H. Bui, J. Electron. Mater. 46, 3279 (2017).CrossRefGoogle Scholar
  11. 11.
    H.H. Yang, W.G. Fan, V. Aleksandar, A. Susha, W.Y. Teoh, and A.L. Rogach, Adv. Funct. Mater. 22, 2821 (2012).CrossRefGoogle Scholar
  12. 12.
    M.Z. Ge, Q.S. Li, C.Y. Cao, J.Y. Huang, S.H. Li, S.N. Zhang, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, and Y.K. Lai, Adv. Sci. 4, 1600152 (2017).CrossRefGoogle Scholar
  13. 13.
    M. Xia, L. Huang, Y. Zhang, and Y. Wang, J. Electron. Mater. 47, 5291 (2018).CrossRefGoogle Scholar
  14. 14.
    R.-A. Doong and C.-Y. Liao, Sep. Purif. Technol. 179, 403 (2017).CrossRefGoogle Scholar
  15. 15.
    M. Szkoda, K. Siuzdak, and A. Lisowska-Oleksiak, Phys. E 84, 141 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Ozkan, A. Mazare, and P. Schmuki, Electrochim. Acta 176, 819 (2015).CrossRefGoogle Scholar
  17. 17.
    A.M.D. Fornari, M.B. de Araujo, C.B. Duarte, G. Machado, S.R. Teixeira, and D.E. Weibel, Int. J. Hydrog. Energy 41, 11599 (2016).CrossRefGoogle Scholar
  18. 18.
    J.F. de Brito, F. Tavella, C. Genovese, C. Ampelli, M.V.B. Zanoni, G. Centi, and S. Perathoner, Appl. Catal. B Environ. 224, 136 (2018).CrossRefGoogle Scholar
  19. 19.
    Y. Li, F.-T. Liu, Y. Chang, J. Wang, and C.-W. Wang, Appl. Surf. Sci. 426, 770 (2017).CrossRefGoogle Scholar
  20. 20.
    H. Tian, K. Shen, X. Hu, L. Qiao, and W. Zheng, J. Alloys Compd. 691, 369 (2017).CrossRefGoogle Scholar
  21. 21.
    M. Faraji, N. Mohaghegh, and A. Abedini, J. Photochem. Photobio. B 178, 124 (2018).CrossRefGoogle Scholar
  22. 22.
    X. Yuan, J. Yi, H. Wang, H. Yu, S. Zhang, and F. Peng, Mater. Chem. Phys. 196, 237 (2017).CrossRefGoogle Scholar
  23. 23.
    L.T.V. Ha, L.M. Dai, D.N. Nhiem, and N. Van Cuong, J. Electron. Mater. 45, 4215 (2016).CrossRefGoogle Scholar
  24. 24.
    J. Hong, K.-I. Katsumata, and N. Matsushita, J. Electron. Mater. 45, 4875 (2016).CrossRefGoogle Scholar
  25. 25.
    K. Rajar, Sirajuddin, A. Balouch, M.I. Bhanger, T.H. Sherazi, and R. Kumar, J. Electron. Mater. 47, 2177 (2018).CrossRefGoogle Scholar
  26. 26.
    E. Mendoza-Mendoza, A.G. Nuñez-Briones, L.A. García-Cerda, R.D. Peralta-Rodríguez, and A.J. Montes-Luna, Ceram. Int. 44, 6176 (2018).CrossRefGoogle Scholar
  27. 27.
    A. Abbasi, M. Hamadanian, M. Salavati-Niasari, and S. Mortazavi-Derazkola, J. Colloid Interface Sci. 500, 276 (2017).CrossRefGoogle Scholar
  28. 28.
    P. Cheng and G. Lian, J. Am. Ceram. Soc. 91, 2388 (2008).CrossRefGoogle Scholar
  29. 29.
    A. Kumar, T. Dixit, I.A. Palani, P.R. Sagdeo, and V. Singh, Int. J. Appl. Ceram. Technol. 13, 912 (2016).CrossRefGoogle Scholar
  30. 30.
    T. Dixit, I.A. Palani, and V. Singh, J. Mater. Sci. Mater. Electron. 26, 821 (2015).CrossRefGoogle Scholar
  31. 31.
    A. Chakraborty, R. Pizzoferrato, A. Agresti, F. De Matteis, A. Orsini, and P.G. Medaglia, J. Electron. Mater. 47, 5863 (2018). https://doi.org/10.1007/s11664-018-6473-5 CrossRefGoogle Scholar
  32. 32.
    L. Zhang, C.H. Dai, X.N. Zhang, Y.N. Liu, and J.H. Yan, J. Cent. South Univ. 23, 3092 (2016).CrossRefGoogle Scholar
  33. 33.
    L. Zhang, J.H. Yan, M. Zhou, Y. Yang, and Y.N. Liu, Appl. Surf. Sci. 268, 237 (2013).CrossRefGoogle Scholar
  34. 34.
    M. Nazari, F. Golestani-Fard, R. Bayati, and B. Eftekhari-Yekta, Superlattice Microstruct. 80, 91 (2015).CrossRefGoogle Scholar
  35. 35.
    X. Deng, H. Zhang, Q. Ma, Y. Cui, X. Cheng, X. Li, M. Xie, and Q. Cheng, Sep. Purif. Technol. 186, 1 (2017).CrossRefGoogle Scholar
  36. 36.
    M. Grandcolas, T. Cottineau, A. Louvet, N. Keller, and V. Keller, Appl. Catal. B Environ. 138–139, 128 (2013).CrossRefGoogle Scholar
  37. 37.
    H. Wang, W. Zhu, B. Chong, and K. Qin, Int. J. Hydrog. Energy 39, 90 (2014).CrossRefGoogle Scholar
  38. 38.
    P. Parhi and V. Manivannan, J. Eur. Ceram. Soc. 28, 1665 (2008).CrossRefGoogle Scholar
  39. 39.
    Z.L. Wang, J. Phys. Condens. Matter 16, 829 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangPeople’s Republic of China

Personalised recommendations