Advertisement

Plasma-Assisted Chemical Vapor Synthesis of Aluminum-Doped Zinc Oxide Nanopowder and Synthesis of AZO Films for Optoelectronic Applications

  • Arun MuraliEmail author
  • Hong Yong Sohn
  • Prashant Kumar Sarswat
Article
  • 10 Downloads

Abstract

Transparent conducting oxide aluminum-doped zinc oxide (AZO) nanoparticles were synthesized by a plasma-assisted chemical vapor synthesis route using zinc nitrate and aluminum nitrate as the precursors. The injected precursors vaporized in the plasma flame, followed by vapor-phase reaction and subsequent quenching of the vaporized precursors, producing nanosized AZO powder. The amount of aluminum nitrate was varied to obtain samples with 2 at.%, 4 at.% and 8 at.% Al, designated as AZO1, AZO2 and AZO3, respectively. The XRD patterns of the AZO1 and AZO2 nanoparticles indicated the presence of a wurtzite structure without any alumina peaks except in the AZO3 sample, and scanning electron microscopy micrographs revealed spherical particles. The magnetization measurements revealed a ferromagnetic behavior at room temperature in the AZO1 sample, and the ferromagnetic order is decreased in the high field region with an increase in the Al doping amount. AZO thin films were deposited on glass substrates by spin-coating a dispersion of nanoparticles. All the AZO films had a hexagonal wurtzite structure and exhibited a c-axis preferred orientation perpendicular to the substrate. The Hall effect measurements yielded a minimum resistivity of 9.9 × 10−4 Ω cm for the AZO2 film and optical transmission of 80% for both the AZO1 and AZO2 films. However, with 8 at.% Al in the AZO3 film, deterioration in crystallinity, electrical and optical properties were observed. Post-annealing of the AZO1 film in H2 atmosphere caused a significant decrease in resistivity from 1.2 × 10−3 Ω cm to 8.7 × 10−4 Ω cm. The optical band gap energies of the AZO films were determined from the transmission spectra. The blue shift in the band gap from 3.2 eV to 3.28 eV, observed with an increase in Al doping, was interpreted by the Burstein–Moss effect. The photoluminescence spectra of the AZO films revealed a UV near-band edge emission and a green emission peak.

Keywords

Plasma doped-zinc oxide chemical vapor synthesis optoelectronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge William D. Mace with the Department of Geology & Geophysics for help with the XRD analysis. The authors thank Dr. Paulo Perez and Dr. Brian Van Devener with the University of Utah Nanofab for assistance with the SEM, PL and XPS analyses and Dr. Xu-Zhou Yan with the Department of Chemistry for help with the UV–Visible analysis. The financial support from NSF/U.S.-Egypt Joint Science and Technology Board under NSF Grant No. IIA-1445577 is gratefully acknowledged.

Supplementary material

11664_2019_6926_MOESM1_ESM.pdf (801 kb)
Supplementary material 1 (PDF 800 kb)

References

  1. 1.
    C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007).CrossRefGoogle Scholar
  2. 2.
    T.P. Chou, Q. Zhang, G.E. Fryxell, and G.Z. Cao, Adv. Mater. 19, 2588 (2007).CrossRefGoogle Scholar
  3. 3.
    P.X. Gao and Z.L. Wang, J. Appl. Phys. 97, 044304 (2005).CrossRefGoogle Scholar
  4. 4.
    T. Minami, Semicond. Sci. Technol. 20, S35 (2005).CrossRefGoogle Scholar
  5. 5.
    T.T. Werner, G.M. Mudd, and S.M. Jowitt, Appl. Earth Sci. 124, 213 (2015).CrossRefGoogle Scholar
  6. 6.
    J.H. Huang, R.Q. Tan, J. Li, Y.L. Zhang, Y. Yang, and W.J. Song, Mater. Sci. Forum 685, 147 (2011).CrossRefGoogle Scholar
  7. 7.
    S.O.E. Hamali, W.M. Cranton, N. Kalfagiannis, X. Hou, R. Ranson, and D.C. Koutsogeorgis, Opt. Lasers Eng. 80, 45 (2016).CrossRefGoogle Scholar
  8. 8.
    Z. Chen, G. Zhan, Y. Wu, X. He, and Z. Lu, J. Alloys Compd. 587, 692 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Ogi, D. Hidayat, F. Iskandar, A. Purwanto, and K. Okuyama, Adv. Powder Technol. 20, 203 (2009).CrossRefGoogle Scholar
  10. 10.
    F. Giovannelli, A.N. Ndimba, P. Diaz-Chao, M. Motelica-Heino, P. Raynal, C. Autret, and F. Delorme, Powder Technol. 262, 203 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Alkahlout, N.A. Dahoudi, I. Grobelsek, M. Jilavi, and P.W.D. Oliveira, J. Mater. 2014, 1 (2014).CrossRefGoogle Scholar
  12. 12.
    O. Nava, P. Luque, C. Gómez-Gutiérrez, A. Vilchis-Nestor, A. Castro-Beltrán, M. Mota-González, and A. Olivas, J. Mol. Struct. 1134, 121 (2017).CrossRefGoogle Scholar
  13. 13.
    O. Nava, C. Soto-Robles, C. Gómez-Gutiérrez, A. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, and P. Luque, J. Mol. Struct. 1147, 1 (2017).CrossRefGoogle Scholar
  14. 14.
    H.Y. Sohn, Chemical vapor synthesis of inorganic nanopowders (New York: Nova Science Publishers, 2012).Google Scholar
  15. 15.
    G. Buhler, C. Feldmann, and D. Tholmann, Adv. Mater. 19, 2224 (2007).CrossRefGoogle Scholar
  16. 16.
    J. Ederth, P. Heszler, A. Hultaker, G. Niklasson, and C. Granqvist, Thin Solid Films 445, 199 (2003).CrossRefGoogle Scholar
  17. 17.
    S.H. Mousavi, T.S. Muller, and P.W.D. Oliveira, J. Mater. Sci.: Mater. Electron. 24, 3338 (2013).Google Scholar
  18. 18.
    C.-H. Zhai, R.-J. Zhang, X. Chen, Y.-X. Zheng, S.-Y. Wang, J. Liu, N. Dai, and L.-Y. Chen, Nanoscale Res. Lett. 11, 407 (2016).CrossRefGoogle Scholar
  19. 19.
    T. Ryu, H. Sohn, K.S. Hwang, and Z.Z. Fang, J. Alloys Compd. 481, 274 (2009).CrossRefGoogle Scholar
  20. 20.
    A. Murali and H.Y. Sohn, Mater. Res. Express 5, 065045 (2018).CrossRefGoogle Scholar
  21. 21.
    A. Murali and H.Y. Sohn, J. Mater. Sci.: Mater. Electron. 29, 14945 (2018).Google Scholar
  22. 22.
    A. Murali and H.Y. Sohn, Mater. Today Chem. 11, 60 (2019).CrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, Elements of X-ray Diffraction (Reading: Addison-Wesley Publishing Company Inc, 1967).Google Scholar
  24. 24.
    O. Lpan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, Sol. Energy Mater. Sol. Cells 93, 1417 (2009).CrossRefGoogle Scholar
  25. 25.
    P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, and M.L. Free, Appl. Nanosci. (2019).  https://doi.org/10.1016/j.apsusc.2018.12.300 Google Scholar
  26. 26.
    T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, and R.M. Nor, PLoS ONE 10, e0121756 (2015).CrossRefGoogle Scholar
  27. 27.
    A. Murali and H.Y. Sohn, J. Nanosci. Nanotechnol. (2019).  https://doi.org/10.1166/jnn.2019.16363.Google Scholar
  28. 28.
    A.N. Mallika, A. Ramachandrareddy, K. Sowribabu, and K.V. Reddy, Ceram. Int. 40, 12171 (2014).CrossRefGoogle Scholar
  29. 29.
    A. Kelchtermans, K. Elen, K. Schellens, B. Conings, H. Damm, H.-G. Boyen, J. Dhaen, P. Adriaensens, A. Hardy, and M.K.V. Bael, RSC Adv. 3, 15254 (2013).CrossRefGoogle Scholar
  30. 30.
    J.B. Shim, J.W. Grant, W.R. Harrell, H. Chang, and S.-O. Kim, Micro Nano Lett. 6, 147 (2011).CrossRefGoogle Scholar
  31. 31.
    C.-A. Tseng, J.-C. Lin, W.-H. Weng, and C.-C. Lin, Jpn. J. Appl. Phys. 52, 025801 (2013).CrossRefGoogle Scholar
  32. 32.
    H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, Appl. Surf. Sci. 257, 4906 (2011).CrossRefGoogle Scholar
  33. 33.
    M. Gao, X. Wu, J. Liu, and W. Liu, Appl. Surf. Sci. 257, 6919 (2011).CrossRefGoogle Scholar
  34. 34.
    B.-Y. Oh, M.-C. Jeong, and J.-M. Myoung, Appl. Surf. Sci. 253, 7157 (2007).CrossRefGoogle Scholar
  35. 35.
    M. Chen, X. Wang, Y. Yu, Z. Pei, X. Bai, C. Sun, R. Huang, and L. Wen, Appl. Surf. Sci. 158, 134 (2000).CrossRefGoogle Scholar
  36. 36.
    X.-J. Yang, X.-Y. Miao, X.-L. Xu, C.-M. Xu, J. Xu, and H.-T. Liu, Opt. Mater. 27, 1602 (2005).CrossRefGoogle Scholar
  37. 37.
    H.-W. Park, K.-B. Chung, and J.-S. Park, Curr. Appl. Phys. 12, H133 (2012).Google Scholar
  38. 38.
    T.C. Damen, S.P.S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).CrossRefGoogle Scholar
  39. 39.
    P.K. Sarswat, M.L. Free, and A. Tiwari, Phys. Status Solidi (B) 248, 2170 (2011).Google Scholar
  40. 40.
    S.-S. Lo, D. Huang, C.H. Tu, C.-H. Hou, and C.-C. Chen, J. Phys. D Appl. Phys. 42, 095420 (2009).CrossRefGoogle Scholar
  41. 41.
    O. Lupan, L. Chow, S. Shishiyanu, E. Monaico, T. Shishiyanu, V. Sontea, B.R. Cuenya, A. Naitabdi, S. Park, and A. Schulte, Mater. Res. Bull. 44, 63 (2009).CrossRefGoogle Scholar
  42. 42.
    M.H. Yoon, S.H. Lee, H.L. Park, H.K. Kim, and M.S. Jung, J. Mater. Sci. Lett. 21, 1703 (2002).CrossRefGoogle Scholar
  43. 43.
    R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, and M.J. Callahan, Phys. Rev. B 75, 165202 (2007).CrossRefGoogle Scholar
  44. 44.
    V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, and A.L. Bassi, J. Appl. Phys. 115, 073508 (2014).CrossRefGoogle Scholar
  45. 45.
    H.S. Majumdar, S. Majumdar, D. Tobjörk, and R. österbacka, Synth. Met. 160, 303 (2010).CrossRefGoogle Scholar
  46. 46.
    B. Xia, Y. Wu, H.W. Ho, C. Ke, W.D. Song, C.H.A. Huan, J.L. Kuo, W.G. Zhu, and L. Wang, Phys. B 406, 3166 (2011).CrossRefGoogle Scholar
  47. 47.
    M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, M. Mathai, G. Alnawashi, G.M. Alzoubi, F. Al-Dweri, and M.S. Bawaaneh, Results Phys. 6, 1064 (2016).CrossRefGoogle Scholar
  48. 48.
    X. Wu, Z. Wei, L. Zhang, X. Wang, H. Yang, and J. Jiang, J. Nanomater. 2014, 1 (2014).Google Scholar
  49. 49.
    R. Elilarassi and G. Chandrasekaran, Optoelectron. Lett. 8, 109 (2012).CrossRefGoogle Scholar
  50. 50.
    D. Gao, J. Zhang, G. Yang, J. Zhang, Z. Shi, J. Qi, Z. Zhang, and D. Xue, J. Phys. Chem. C 114, 13477 (2010).CrossRefGoogle Scholar
  51. 51.
    Y.P. Lan, H.Y. Sohn, A. Murali, J. Li, and C. Chen, Appl. Phys. A 124, 702 (2018).CrossRefGoogle Scholar
  52. 52.
    Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, and M. Wei, J. Alloys Compd. 486, 835 (2009).CrossRefGoogle Scholar
  53. 53.
    H.W. Kim, M.A. Kebede, and H.S. Kim, Curr. Appl. Phys. 10, 60 (2010).CrossRefGoogle Scholar
  54. 54.
    W. Yang, Z. Liu, D.-L. Peng, F. Zhang, H. Huang, Y. Xie, and Z. Wu, Appl. Surf. Sci. 255, 5669 (2009).CrossRefGoogle Scholar
  55. 55.
    L.J. Li, H. Deng, L.P. Dai, J.J. Chen, Q. Yuan, and Y. Li, Mater. Res. Bull. 43, 1456 (2008).CrossRefGoogle Scholar
  56. 56.
    S. Hartner, M. Ali, C. Schulz, M. Winterer, and H. Wiggers, Nanotechnology 20, 44570 (2009).CrossRefGoogle Scholar
  57. 57.
    F.K. Mugwang’a, P.K. Karimi, W.K. Njoroge, and O. Omayio, J. Fundam. Renew. Energy Appl. 5, 170 (2015).Google Scholar
  58. 58.
    S.D. Shinde, S.K. Date, A.V. Deshmukh, A. Das, P. Misra, L.M. Kukreja, and K.P. Adhi, RSC Adv. 5, 24178 (2015).CrossRefGoogle Scholar
  59. 59.
    B.-Y. Oh, M.-C. Jeong, D.-S. Kim, W. Lee, and J.-M. Myoung, J. Cryst. Growth 281, 475 (2005).CrossRefGoogle Scholar
  60. 60.
    S. Major, A. Banerjee, and K. Chopra, Thin Solid Films 122, 31 (1984).CrossRefGoogle Scholar
  61. 61.
    P. Nunes, A. Malik, B. Fernandes, E. Fortunato, P. Vilarinho, and R. Martins, Vacuum 52, 45 (1999).CrossRefGoogle Scholar
  62. 62.
    M. Saleem, M.F. Al-Kuhaili, S.M.A. Durrani, A.H.Y. Hendi, I.A. Bakhtiari, and S. Ali, Int. J. Hydrog. Energy 40, 12343 (2015).CrossRefGoogle Scholar
  63. 63.
    M.-I. Lee, M.-C. Huang, D. Legrand, G. Lerondel, and J.-C. Lin, Thin Solid Films 570, 516 (2014).CrossRefGoogle Scholar
  64. 64.
    N.A. El-Ghamaz, A. El-Sonbati, and S.M. Morgan, J. Mol. Struct. 1027, 92 (2012).CrossRefGoogle Scholar
  65. 65.
    T. Minami, H. Sato, T. Sonoda, H. Nanto, and S. Takata, Thin Solid Films 171, 307 (1989).CrossRefGoogle Scholar
  66. 66.
    K.H. Kim, K.C. Park, and D.Y. Ma, J. Appl. Phys. 81, 7764 (1997).CrossRefGoogle Scholar
  67. 67.
    M. Tomakin, Superlattices Microstruct. 51, 372 (2012).CrossRefGoogle Scholar
  68. 68.
    E. Burstein, Phys. Rev. 93, 632 (1954).CrossRefGoogle Scholar
  69. 69.
    M. Saha, S. Ghosh, V.D. Ashok, and S.K. De, Phys. Chem. Chem. Phys. 17, 16067 (2015).CrossRefGoogle Scholar
  70. 70.
    C.E. Kim, P. Moon, S. Kim, J.-M. Myoung, H.W. Jang, J. Bang, and I. Yun, Thin Solid Films 518, 6304 (2010).CrossRefGoogle Scholar
  71. 71.
    S. Mondal, S.R. Bhattacharyya, and P. Mitra, Pramana 80, 315 (2013).CrossRefGoogle Scholar
  72. 72.
    X.C. Shen, The Spectrum and Optical Property of Semiconductor (Beijing: Science Press, 1992).Google Scholar
  73. 73.
    Q.H. Li, D. Zhu, W. Liu, Y. Liu, and X.C. Ma, Appl. Surf. Sci. 254, 2922 (2008).CrossRefGoogle Scholar
  74. 74.
    P. Zu, Z.K. Tang, G.K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).CrossRefGoogle Scholar
  75. 75.
    B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, and C.G. Granqvist, Phys. Rev. B 37, 10244 (1988).CrossRefGoogle Scholar
  76. 76.
    Q. Hou, F. Meng, and J. Sun, Nanoscale Res. Lett. 8, 144 (2013).CrossRefGoogle Scholar
  77. 77.
    C. Bouvy, W. Marine, R. Sporken, and B. Su, Chem. Phys. Lett. 428, 312 (2006).CrossRefGoogle Scholar
  78. 78.
    G. Haacke, J. Appl. Phys. 47, 4086 (1976).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations