Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1164–1173 | Cite as

Ab Initio Investigations of the Structural, Electronic, Magnetic, and Thermoelectric Properties of CoFeCuZ (Z = Al, As, Ga, In, Pb, Sb, Si, Sn) Quaternary Heusler Alloys

  • Raad Haleoot
  • Bothina Hamad
Article
  • 31 Downloads

Abstract

The structural, electronic, magnetic, and thermoelectric properties of CoFeCuZ (Z = Al, As, Ga, In, Pb, Sb, Si, Sn) quaternary Heusler alloys were investigated using density functional theory. The calculated formation energies confirmed that these alloys are thermodynamically stable. The CoFeCuPb alloy is predicted to be a half-metallic ferromagnet under the equilibrium lattice constant with a spin-down band gap and a total magnetic moment of 0.303 eV and 4.0μB, respectively. However, the other alloys are either metallic for Z = Al, As or nearly half-metallic for Z = Ga, In, Sb, Si, Sn. It was found that CoFeCuPb is half-metallic under uniform pressure that ranges from −12.75 GPa to 8.46 GPa with an optimum band gap at the equilibrium lattice constant. The total magnetic moment of CoFeCuPb was robust under pressure that ranges between −6.3 GPa and 13.89 GPa. The thermoelectric properties are also investigated for CoFeCuPb alloy using classical transport theory. Under an equilibrium lattice constant, high power factors of 159.5 × 1014 μWcm−1 K−2 s−1 and 69.5 × 1014 μWcm−1 K−2 s−1 are obtained at 800 K and 300 K, respectively.

Keywords

CoFeCuZ Heusler compounds half-metallic electronic properties thermoelectric properties ab initio calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11664_2018_6833_MOESM1_ESM.pdf (225 kb)
Supplementary material 1 (PDF 224 kb)

References

  1. 1.
    F. Heusler and Z. Für. Angew. Chem. 17, 260 (1904).CrossRefGoogle Scholar
  2. 2.
    X.Y. Dong, C. Adelmann, J.Q. Xie, C.J. Palmstrøm, X. Lou, J. Strand, P.A. Crowell, J.-P. Barnes, and A.K. Petford-Long, Appl. Phys. Lett. 86, 102107 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Chadov, T. Graf, K. Chadova, X. Dai, F. Casper, G.H. Fecher, and C. Felser, Phys. Rev. Lett. 107, 047202 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).CrossRefGoogle Scholar
  5. 5.
    G.Y. Gao, L. Hu, K.L. Yao, B. Luo, and N. Liu, J. Alloys Compd. 551, 539 (2013).CrossRefGoogle Scholar
  6. 6.
    X. Dai, G. Liu, G.H. Fecher, C. Felser, Y. Li, and H. Liu, J. Appl. Phys. 105, 07E901 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Özdoğan, E. ŞaŞıoğlu, and I. Galanakis, J. Appl. Phys. 113, 193903 (2013).CrossRefGoogle Scholar
  8. 8.
    L. Bainsla and K.G. Suresh, Appl. Phys. Rev. 3, 031101 (2016).CrossRefGoogle Scholar
  9. 9.
    B. Hamad, J. Mater. Sci. 51, 10887 (2016).CrossRefGoogle Scholar
  10. 10.
    G. Joshi and B. Poudel, J. Electron. Mater. 45, 6047 (2016).CrossRefGoogle Scholar
  11. 11.
    V. Vikram, J. Kangsabanik, E. Enamullah, and A. Alam, J. Mater. Chem. A 5, 6131 (2017).CrossRefGoogle Scholar
  12. 12.
    C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 8144 (2015).CrossRefGoogle Scholar
  13. 13.
    O. Heusler, Ann. Phys. 411, 155 (1934).CrossRefGoogle Scholar
  14. 14.
    S.K. Mohanta, Y. Tao, X. Yan, G. Qin, V. Chandragiri, X. Li, C. Jing, S. Cao, J. Zhang, Z. Qiao, H. Gu, and W. Ren, J. Magn. Magn. Mater. 430, 65 (2017).CrossRefGoogle Scholar
  15. 15.
    J. Drews, U. Eberz, and H.-U. Schuster, J. Common Met. 116, 271 (1986).CrossRefGoogle Scholar
  16. 16.
    W. Jeitschko, Metall. Trans. 1, 3159 (1970).Google Scholar
  17. 17.
    V. Alijani, S. Ouardi, G.H. Fecher, J. Winterlik, S.S. Naghavi, X. Kozina, G. Stryganyuk, C. Felser, E. Ikenaga, Y. Yamashita, S. Ueda, and K. Kobayashi, Phys. Rev. B 84, 224416 (2011).CrossRefGoogle Scholar
  18. 18.
    A. Amudhavalli, R. Rajeswarapalanichamy, and K. Iyakutti, J. Magn. Magn. Mater. 441, 21 (2017).CrossRefGoogle Scholar
  19. 19.
    Enamullah, D.D. Johnson, K.G. Suresh, and A. Alam, Phys. Rev. B 94, 184102 (2016).CrossRefGoogle Scholar
  20. 20.
    G. Qin, W. Wu, S. Hu, Y. Tao, X. Yan, C. Jing, X. Li, H. Gu, S. Cao, and W. Ren, IUCrJ 4, 506 (2017).CrossRefGoogle Scholar
  21. 21.
    T. Graf, C. Felser, and S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011).CrossRefGoogle Scholar
  22. 22.
    V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, and C. Felser, Phys. Rev. B 83, 184428 (2011).CrossRefGoogle Scholar
  23. 23.
    L. Xiong, L. Yi, and G.Y. Gao, J. Magn. Magn. Mater. 360, 98 (2014).CrossRefGoogle Scholar
  24. 24.
    T.M. Bhat and D.C. Gupta, RSC Adv. 6, 80302 (2016).CrossRefGoogle Scholar
  25. 25.
    G.Z. Xu, E.K. Liu, Y. Du, G.J. Li, G.D. Liu, W.H. Wang, and G.H. Wu, EPL Europhys. Lett. 102, 17007 (2013).CrossRefGoogle Scholar
  26. 26.
    A. Kundu, S. Ghosh, R. Banerjee, S. Ghosh, and B. Sanyal, Sci. Rep. 7, 1803 (2017).CrossRefGoogle Scholar
  27. 27.
    J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).Google Scholar
  28. 28.
    T.M. Bhat and D.C. Gupta, J. Phys. Chem. Solids 112, 190 (2018).CrossRefGoogle Scholar
  29. 29.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  30. 30.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  32. 32.
    M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).CrossRefGoogle Scholar
  33. 33.
    P. Mavropoulos, K. Sato, R. Zeller, P.H. Dederichs, V. Popescu, and H. Ebert, Phys. Rev. B 69, 054424 (2004).CrossRefGoogle Scholar
  34. 34.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  35. 35.
    I.I. Mazin, Phys. Rev. Lett. 83, 1427 (1999).CrossRefGoogle Scholar
  36. 36.
    S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, H.-J. Lin, and J. Morais, Phys. Rev. B 72, 184434 (2005).CrossRefGoogle Scholar
  37. 37.
    B. Balke, G.H. Fecher, H.C. Kandpal, C. Felser, K. Kobayashi, E. Ikenaga, J.-J. Kim, and S. Ueda, Phys. Rev. B 74, 104405 (2006).CrossRefGoogle Scholar
  38. 38.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
  39. 39.
    H.C. Kandpal, G.H. Fecher, and C. Felser, J. Phys. Appl. Phys. 40, 1507 (2007).CrossRefGoogle Scholar
  40. 40.
    Q. Gao, L. Li, G. Lei, J.-B. Deng, and X.-R. Hu, J. Magn. Magn. Mater. 379, 288 (2015).CrossRefGoogle Scholar
  41. 41.
    S. Skaftouros, K. Özdoğan, E. ŞaŞıoğlu, and I. Galanakis, Phys. Rev. B 87, 024420 (2013).CrossRefGoogle Scholar
  42. 42.
    H. Luo, G. Liu, F. Meng, L. Wang, E. Liu, G. Wu, X. Zhu, and C. Jiang, Comput. Mater. Sci. 50, 3119 (2011).CrossRefGoogle Scholar
  43. 43.
    H. Luo, F. Meng, H. Liu, J. Li, E. Liu, G. Wu, X. Zhu, and C. Jiang, J. Magn. Magn. Mater. 324, 2127 (2012).CrossRefGoogle Scholar
  44. 44.
    X.-Q. Chen, R. Podloucky, and P. Rogl, J. Appl. Phys. 100, 113901 (2006).CrossRefGoogle Scholar
  45. 45.
    A. Boochani, H. Khosravi, J. Khodadadi, S. Solaymani, M.M. Sarmazdeh, R.T. Mendi, and S.M. Elahi, Commun. Theor. Phys. 63, 641 (2015).CrossRefGoogle Scholar
  46. 46.
    R. Jain, V.K. Jain, A.R. Chandra, V. Jain, and N. Lakshmi, J. Supercond. Nov. Magn. 31, 2399 (2018).CrossRefGoogle Scholar
  47. 47.
    M.H. Elahmar, H. Rached, D. Rached, R. Khenata, G. Murtaza, S. Bin Omran, and W.K. Ahmed, J. Magn. Magn. Mater. 393, 165 (2015).CrossRefGoogle Scholar
  48. 48.
    A. Candan, G. Uğur, Z. Charifi, H. Baaziz, and M.R. Ellialtıoğlu, J. Alloys Compd. 560, 215 (2013).CrossRefGoogle Scholar
  49. 49.
    G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. 93, 7436 (1996).CrossRefGoogle Scholar
  50. 50.
    N. Narendra and K.W. Kim, Semicond. Sci. Technol. 32, 035005 (2017).CrossRefGoogle Scholar
  51. 51.
    H.-W. Jeon, H.-P. Ha, D.-B. Hyun, and J.-D. Shim, J. Phys. Chem. Solids 52, 579 (1991).CrossRefGoogle Scholar
  52. 52.
    O. Yamashita, S. Tomiyoshi, and K. Makita, J. Appl. Phys. 93, 368 (2003).CrossRefGoogle Scholar
  53. 53.
    Y. Tang, Z.M. Gibbs, L.A. Agapito, G. Li, H.-S. Kim, M.B. Nardelli, S. Curtarolo, and G.J. Snyder, Nat. Mater. 14, 1223 (2015).CrossRefGoogle Scholar
  54. 54.
    T. Caillat, A. Borshchevsky, and J.-P. Fleurial, J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
  55. 55.
    T.M. Bhat and D.C. Gupta, J. Magn. Magn. Mater. 449, 493 (2018).CrossRefGoogle Scholar
  56. 56.
    H. Zhu, W. Sun, R. Armiento, P. Lazic, and G. Ceder, Appl. Phys. Lett. 104, 082107 (2014).CrossRefGoogle Scholar
  57. 57.
    Z.H. Dughaish, Phys. B Condens. Matter 322, 205 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Microelectronics and Photonics Graduate ProgramUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Physics at the College of EducationUniversity of MustansiriyahBaghdadIraq
  3. 3.Department of PhysicsUniversity of ArkansasFayettevilleUSA
  4. 4.Physics DepartmentThe University of JordanAmmanJordan

Personalised recommendations