Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1416–1420 | Cite as

Enhanced Magnetic Properties in Ar+-Ion Beam-Bombarded MnBi Thin Films

  • X. LiEmail author
  • C.-H. Wu
  • Y.-J. Lee
  • Y.-L. Huang
  • C.-L. Huang
  • J.-L. Tsai
  • T.-H. Wu
  • T. Chen
  • J. van LieropEmail author
  • K.-W. LinEmail author
5th International Conference of Asian Union of Magnetics Societies
  • 25 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

MnBi is a promising ferromagnetic material for applications at elevated temperatures due to its high Curie temperature, sizable magnetocrystalline anisotropy, and increasing coercivity with temperature. However, fabrication of MnBi thin films with ferromagnetic low-temperature phase (LTP) is conventionally difficult due to the peritectic Mn-Bi reaction and Mn oxidization. In this work, in situ Ar+-ion beam bombardment was introduced to modify the microstructure and magnetic properties of (Mn/Bi)n superlattice. Structural characterization revealed formation of MnBi LTP in the as-deposited ion-beam-bombarded samples. Vacuum annealing further promoted growth of MnBi LTP grains with c-axis orientation, leading to remarkably improved perpendicular magnetic anisotropy. Ion-beam bombardment resulted in a 200% increase in the saturation magnetization of the annealed MnBi thin film. This advancement is attributed to the enhanced interdiffusion and reaction of Mn and Bi in the ion-beam-bombarded thin films. A stability test after 150 days in air revealed a remarkable reduction in ferromagnetism due to MnBi decomposition. This work provides an effective approach for fabrication of high-quality MnBi thin films.

Keywords

MnBi thin film magnetic properties ion-beam bombardment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hirohata, H. Sukegawa, H. Yanagihara, I. Zutic, T. Seki, S. Mizukami, and R. Swaminathan, IEEE Trans. Magn. 51, 1 (2015).CrossRefGoogle Scholar
  2. 2.
    N.M. Dempsey, A. Walther, F. May, D. Givord, K. Khlopkov, and O. Gutfleisch, Appl. Phys. Lett. 90, 092509 (2007).CrossRefGoogle Scholar
  3. 3.
    D. Chen, J.F. Ready, and E.G. Bernal, J. Appl. Phys. 39, 3916 (1968).CrossRefGoogle Scholar
  4. 4.
    X. Guo, X. Chen, Z. Altounian, and J.O. Ström-Olsen, Phys. Rev. B 46, 14578 (1992).CrossRefGoogle Scholar
  5. 5.
    G.Q. Di, S. Iwata, S. Tsunashima, and S. Uchiyama, J. Magn. Magn. Mater. 104–107, 1023 (1992).CrossRefGoogle Scholar
  6. 6.
    P. Kharel, P. Thapa, P. Lukashev, R.F. Sabirianov, E.Y. Tsymbal, D.J. Sellmyer, and B. Nadgorny, Phys. Rev. B 83, 024415 (2011).CrossRefGoogle Scholar
  7. 7.
    P. Hu, S. Wu, G. Wang, D. Li, W. Zhou, H. Li, and S. Li, Europhys. Lett. 119, 57004 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Cui, J.P. Choi, G. Li, E. Polikarpov, J. Darsell, N. Overman, M. Olszta, D. Schreiber, M. Bowden, T. Droubay, M.J. Kramer, N.A. Zarkevich, L.L. Wang, D.D. Johnson, M. Marinescu, I. Takeuchi, Q.Z. Huang, H. Wu, H. Reeve, N.V. Vuong, and J.P. Liu, J. Phys.: Condens. Matter 26, 064212 (2014).Google Scholar
  9. 9.
    M.Y. Sun, X.W. Xu, X.A. Liang, X.W. Sun, and Y.J. Zheng, J. Alloys Compd. 672, 59 (2016).CrossRefGoogle Scholar
  10. 10.
    J.B. Yang, W.B. Yelon, W.J. James, Q. Cai, S. Roy, and N. Ali, J. Appl. Phys. 91, 7866 (2002).CrossRefGoogle Scholar
  11. 11.
    K. Cenzual, L.M. Gelato, M. Penzo, and E. Parthe, Acta Cryst. B 47, 433 (1991).CrossRefGoogle Scholar
  12. 12.
    J.B. Yang, K. Kamaraju, W.B. Yelon, W.J. James, Q. Cai, and A. Bollero, Appl. Phys. Lett. 79, 1846 (2001).CrossRefGoogle Scholar
  13. 13.
    Y.-C. Chen, G. Gregori, A. Leineweber, Q. Fei, C.-C. Chen, T. Tietze, H. Kronmüller, G. Schütz, and E. Goering, Scr. Mater. 107, 131 (2015).CrossRefGoogle Scholar
  14. 14.
    S. Sabet, E. Hildebrandt, F.M. Römer, I. Radulov, H. Zhang, M. Farle, and L. Alff, IEEE Trans. Magn. 53, 1 (2017).CrossRefGoogle Scholar
  15. 15.
    T. Suzuki, T. Hozumi, J. Barker, S. Okatov, O. Mryasov, and T. Suwa, IEEE Trans. Magn. 51, 1 (2015).Google Scholar
  16. 16.
    T. Hozumi, P. LeClair, G. Mankey, C. Mewes, H. Sepehri-Amin, K. Hono, and T. Suzuki, J. Appl. Phys. 115, 17A737 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Moon, S. Kim, H. Jung, H.-S. Lee, and W. Lee, Appl. Surf. Sci. 420, 618 (2017).CrossRefGoogle Scholar
  18. 18.
    D. Zhou, Y.-F. Zhang, X.-B. Ma, S.-Q. Liu, J.-Z. Han, M.-G. Zhu, Chang-Sheng Wang, and J.-B. Yang, Chin. Phys. Lett. 32, 127502 (2015).CrossRefGoogle Scholar
  19. 19.
    X. Li, K.W. Lin, H.T. Liang, H.F. Hsu, N.G. Galkin, Y. Wroczynskyj, J. van Lierop, and P.W.T. Pong, Nucl. Instrum. Methods Phys. Res. B, Part A 365, 196 (2015).CrossRefGoogle Scholar
  20. 20.
    C. Zheng, K.-W. Lin, C.-H. Liu, H.-F. Hsu, C.-W. Leung, W.-H. Chen, T.-H. Wu, R.D. Desautels, J. van Lierop, and P.W.T. Pong, Vacuum 118, 85 (2015).CrossRefGoogle Scholar
  21. 21.
    K.W. Lin, M. Mirza, C. Shueh, H.R. Huang, H.F. Hsu, and J. van Lierop, Appl. Phys. Lett. 100, 122409 (2012).CrossRefGoogle Scholar
  22. 22.
    H.R. Kaufman, R.S. Robinson, and R.I. Seddon, J. Vac. Sci. Technol. A 5, 2081 (1987).CrossRefGoogle Scholar
  23. 23.
    K.-C. Lee, S.-J. Lin, C.-H. Lin, C.-S. Tsai, and Y.-J. Lu, Surf. Coat. Technol. 202, 5339 (2008).CrossRefGoogle Scholar
  24. 24.
    M.A. Akhter, D.J. Mapps, Y.Q. Ma Tan, A. Petford-Long, and R. Doole, J. Appl. Phys. 81, 4122 (1997).CrossRefGoogle Scholar
  25. 25.
    V. Di Castro and G. Polzonetti, J. Electron Spectrosc. Relat. Phenom. 48, 117 (1989).CrossRefGoogle Scholar
  26. 26.
    P. Quarterman, D. Zhang, K.B. Schliep, T.J. Peterson, Y. Lv, and J.-P. Wang, J. Appl. Phys. 122, 213904 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of PhysicsXiamen UniversityXiamenPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan
  3. 3.Graduate School of Materials ScienceNational Yunlin University of Science and TechnologyYunlinTaiwan
  4. 4.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada

Personalised recommendations