Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1005–1010 | Cite as

Refractive Index Sensor Based on the Symmetric MIM Waveguide Structure

  • Yifei ZhangEmail author
  • Min Cui
Article
  • 18 Downloads

Abstract

A surface plasmon polariton refractive index sensor which is composed of a metal–insulator–metal (MIM) waveguide, coupled with two stubs and one ring resonator, is proposed. The transmission characteristics of this plasmonic structure are numerically studied based on the finite element method. The simulation results display that a typical Fano profile is exhibited in the transmission spectra, and that the Fano resonance results from the coupling between broadband spectrum resonance (bright mode) in two stubs and the narrowband spectrum resonance (dark mode) in the ring resonator. Furthermore, the effect of various geometric parameters of this proposed structure and the refractive index sensitivity of the system based on Fano resonance is investigated. The investigations demonstrate that the spectral positions of the Fano resonances are highly sensitive to the radius of the ring resonator and the refractive index of the filling medium. The maximum sensitivity and the figure-of-merit of this structurer are 1268 nm/RIU and 280, respectively. These results provide a reference for achieving high-sensitivity sensors in MIM waveguide coupled systems based on the Fano resonance effect.

Keywords

Surface plasmon polaritons Fano resonance finite element method standing wave theory refractive index sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This work was supported by the Natural Science Research Fund of North University of China (ZBQNJJ2017007).

Author’s Contribution

Yifei Zhang analyzed the data and wrote the paper; Min Cui conceived and designed the simulations; Yifei Zhang performed the simulations.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    W.L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003).CrossRefGoogle Scholar
  2. 2.
    A.V. Zayats, I.I. Smolyaninov, and A.A. Maradudin, Phys. Rep. 408, 131 (2005).CrossRefGoogle Scholar
  3. 3.
    D.K. Gramotnev and S.I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).CrossRefGoogle Scholar
  4. 4.
    R. Zafar and M. Salim, IEEE J. Quantum Electron. 51, 7200306 (2015).CrossRefGoogle Scholar
  5. 5.
    O.S. Ahmed, M.A. Swillam, M.H. Bakr, and X. Li, Opt. Express 18, 21784 (2010).CrossRefGoogle Scholar
  6. 6.
    Z.D. Zhang, H.Y. Wang, and Z.Y. Zhang, Plasmonics 8, 797 (2012).CrossRefGoogle Scholar
  7. 7.
    Y.L. Jiang, J.C. Wang, and Y.K. Wang, Acta Photonica Sinica 43, 0923002 (2014).CrossRefGoogle Scholar
  8. 8.
    V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, and N.I. Zheludev, Phys. Rev. Lett. 99, 147401 (2007).CrossRefGoogle Scholar
  9. 9.
    A. Artar, A.A. Yanik, and H. Altug, Nano Lett. 11, 1685 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Artar, A.A. Yanik, and H. Altug, Nano Lett. 11, 3694 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Wang, X. Yu, and Q. Yu, Appl. Phys. Lett. 103, 824 (2013).Google Scholar
  12. 12.
    J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, and J. Xu, Opt. Express 22, 14688 (2014).CrossRefGoogle Scholar
  13. 13.
    X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, Plasmonics 12, 1449 (2017).CrossRefGoogle Scholar
  14. 14.
    X. Piao, S. Yu, and N. Park, Opt. Express 20, 18994 (2012).CrossRefGoogle Scholar
  15. 15.
    X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, Opt. Express 19, 10907 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Yu, X. Piao, J. Hong, and N. Park, Phys. Rev. A 92, 011802 (2015).CrossRefGoogle Scholar
  17. 17.
    X. Zhao, Z. Zhang, and S. Yan, Sensors 17, 1494 (2017).CrossRefGoogle Scholar
  18. 18.
    S. Yan, M. Zhang, X. Zhao, Y. Zhang, J. Wang, and W. Jin, Sensors 17, 2879 (2017).CrossRefGoogle Scholar
  19. 19.
    Z. Zhang, L. Luo, C. Xue, W. Zhang, and S. Yan, Sensors 16, 642 (2016).CrossRefGoogle Scholar
  20. 20.
    Q. Liu, L. Bibbó, S. Albin, Q. Wang, M. Lin, H.H. Lu, and Z.B. Ouyang, Sci. Rep. 8, 88 (2018).CrossRefGoogle Scholar
  21. 21.
    R.D. Kekatpure, A.C. Hryciw, E.S. Barnard, and M.L. Brongersma, Opt. Express 17, 4112 (2009).CrossRefGoogle Scholar
  22. 22.
    H. Gai, J. Wang, and Q. Tian, Appl. Opt. 46, 2229 (2007).CrossRefGoogle Scholar
  23. 23.
    R.D. Kekatpure, A.C. Hryciw, E.S. Barnard, and M.L. Brongersma, Opt. Express 17, 24112 (2009).CrossRefGoogle Scholar
  24. 24.
    F. Hu, H. Yi, and Z. Zhou, Opt. Lett. 36, 1500 (2011).CrossRefGoogle Scholar
  25. 25.
    J.H. Zhu, Q.J. Wang, P. Shum, and X.G. Huang, IEEE Trans. Nanotechnol. 10, 1371 (2011).CrossRefGoogle Scholar
  26. 26.
    H. Haus and W.P. Huang, Proc. IEEE 79, 1505 (2002).CrossRefGoogle Scholar
  27. 27.
    K. Lee, N. Park, S. Koo, S. Yu, and X. Piao, Opt. Express 19, 10907 (2011).CrossRefGoogle Scholar
  28. 28.
    Z.D. Zhang, R.B. Wang, Z.Y. Zhang, J. Tang, W.D. Zhang, and C.Y. Xue, Plasmonics 12, 1007 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Instrument and ElectronicsNorth University of ChinaTaiyuanChina

Personalised recommendations