Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 997–1004 | Cite as

Design Optimization of an Anisotropic Magnetoresistance Sensor for Detection of Magnetic Nanoparticles

  • L. K. QuynhEmail author
  • B. D. Tu
  • C. V. Anh
  • N. H. Duc
  • A. T. Phung
  • T. T. Dung
  • D. T. Huong GiangEmail author
Article
  • 17 Downloads

Abstract

Recent studies have shown that the magnetic field sensitivity of an anisotropic magnetoresistance (AMR) sensor using a single-layer Ni80Fe20 thin film can be considerably improved by increasing the shape anisotropy of the film. In this work, an effective approach for improving the sensitivity and reducing the magnetic coercive field as well as the thermal noise contribution in an AMR Wheatstone bridge sensor is proposed by combining multiple resistors in the series–parallel combination circuits. Four different AMR sensor designs, consisting of a single resistor, three and five resistors in series and six resistors in series–parallel connection, were fabricated by using Ta (10 nm)/Ni80Fe20 (5 nm)/Ta (10 nm) films grown on thermally oxidized Si substrates under the presence and the absence of a biasing magnetic field (900 Oe). The results showed that the sensors based on series–parallel combination gain a magnetic sensitivity (SH) 1.72 times higher than that of the sensor based on the series connection. This optimized sensor has improved the capacity of detecting various concentrations of magnetic nanoparticles with a detection limit of magnetic moments estimated to be about 0.56 μemu.

Keywords

Anisotropic magnetoresistance Wheatstone bridge magnetic sensor magnetic nanoparticle detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Haji-Sheikh and Y. Yoo, J. Int. Intell. Syst. Technol. Appl. 3, 95 (2007)Google Scholar
  2. 2.
    L.K. Quynh, B.D. Tu, D.X. Dang, D.Q. Viet, L.T. Hien, D.T.H. Giang, and N.H. Duc, J. Sci. Adv. Mater. Dev. 1, 98 (2016).Google Scholar
  3. 3.
    D. Henriksen, B.T. Dealslet, D.H. Skieller, K.H. Lee, F. Okkels, and M.F. Hansen, Appl. Phys. Lett. 97, 013507 (2010).CrossRefGoogle Scholar
  4. 4.
    P. Mlejnek, M. Vopálenský, and P. Ripka, Sens. Actuators A 141, 649 (2008).CrossRefGoogle Scholar
  5. 5.
    A. Persson, R.S. Bejhed, H. Nguyen, K. Gunnarsson, B.T. Dalslet, and F.W. Østerberg, Sens. Actuators A 171, 212 (2011).CrossRefGoogle Scholar
  6. 6.
    A.D. Henriksen, B.T. Dalslet, D.H. Skieller, K.H. Lee, F. Okkels, and M.F. Hansen, Appl. Phys. Lett. 97, 013507 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Doescher, Magnetoresistive sensor having a strip-shaped conductor and a screening strip, United States Patent (2006).Google Scholar
  8. 8.
    J.B. Johnson, Nature 20, 119 (1927).Google Scholar
  9. 9.
    Y.-C. Liang, L. Chang, W. Qiu, A.G. Kolhatkar, B. Vu, K. Kourentzi, T. Randall Lee, Y. Zu, R. Willson, and D. Litvinov, Sensors 17, 1296 (2017).CrossRefGoogle Scholar
  10. 10.
    G. Li, S. Sun, R.J. Wilson, R.L. White, N. Pourmand, and S.X. Wang, Sens. Actuators A 126, 98 (2006).CrossRefGoogle Scholar
  11. 11.
    W. Wang, Y. Wang, T. Liang, Y. Feng, T. Klein, and J.-P. Wang, Sci. Rep. 4, 5716 (2014).CrossRefGoogle Scholar
  12. 12.
    S.X. Wang and G. Li, IEEE Trans. Magn. 44, 1687 (2008).CrossRefGoogle Scholar
  13. 13.
    J. Devkota, C. Wang, A. Ruiz, S. Mohapatra, and P. Mukherjee, J. Appl. Phys. 113, 104701 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Devkota, G. Kokkinis, T. Berris, M. Jamalieh, S. Cardoso, F. Cardoso, H. Srikanth, M.H. Phan, and I. Giouroudi, RSC Adv. 5, 51169 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Ingvarsson, G. Xiao, S.S.P. Parkin, and W.J. Gallagher, J. Magn. Magn. Mater. 251, 202 (2002).CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, Z. Dong, W. Yu-Kun, Y. Yu-Li, H. Zhao-Cong, L. Chen, and Z. Ya, Chin. Phys. B 22, 056801 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Volmer and M. Avram, Microelectron. Eng. 108, 116 (2013).CrossRefGoogle Scholar
  18. 18.
    B.D. Tu, T.Q. Hung, N.T. Thanh, T.M. Danh, N.H. Duc, and C. Kim, J. Appl. Phys. 104, 074701 (2008).CrossRefGoogle Scholar
  19. 19.
    D.T.H. Giang, D.X. Dang, N.X. Toan, N.V. Tuan, A.T. Phung, and N.H. Duc, Rev. Sci. Instrum. 88, 015005 (2017).CrossRefGoogle Scholar
  20. 20.
    L.T. Hien, L.K. Quynh, V.T. Huyen, B.D. Tu, N.T. Hien, D.M. Phuong, P.H. Nhung, D.T.H. Giang, and N.H. Duc, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 045006 (2016).CrossRefGoogle Scholar
  21. 21.
    M. Volmer and M. Avram, J. Magn. Magn. Mater. 381, 481 (2015).CrossRefGoogle Scholar
  22. 22.
    W. Wang, Y. Wang, T. Liang, Y. Feng, T. Klein, and J.-P. Wang, Sci. Rep. 4, 5716 (2014).CrossRefGoogle Scholar
  23. 23.
    G. Lin, D. Makarov, M. Melzer, W. Si, C. Yanac, and O. Schmidt, Lab Chip 14, 4050 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • L. K. Quynh
    • 1
    • 2
    Email author
  • B. D. Tu
    • 1
  • C. V. Anh
    • 1
  • N. H. Duc
    • 1
  • A. T. Phung
    • 3
  • T. T. Dung
    • 2
  • D. T. Huong Giang
    • 1
    Email author
  1. 1.University of Engineering and TechnologyVietnam National UniversityHanoiVietnam
  2. 2.Faculty of PhysicsHa Noi Pedagogical University 2HanoiVietnam
  3. 3.Hanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations