Journal of Electronic Materials

, Volume 48, Issue 2, pp 1044–1053 | Cite as

Prospects of Impact Avalanche Transit-Time Diode Based on Chemical-Vapor-Deposited Diamond Substrate

  • Girish Chandra GhivelaEmail author
  • Joydeep Sengupta


We propose a chemical-vapor-deposited (CVD) diamond-based double-drift-region (DDR) impact avalanche transit-time diode (IMPATT) for use in microwave applications. CVD diamond is taken as the base substrate material. Simulations were carried out to perform direct-current (DC), small-signal, and noise analyses on the IMPATT. The results are in agreement with experimental reports. The IMPATT based on CVD diamond offers better performance compared with other materials reported to date at 26 GHz to 40 GHz. In the near future, this device could represent the best alternative for designers and semiconductor industry, due to its numerous advantages including higher DC-to-radiofrequency (RF) conversion efficiency (27.81%), highest power density (6.206 × 109 W m−2), minimum noise value (− 98.22 dBm), and best optimized conductance–susceptance profile with lower quality factor (0.0215).


CVD diamond DDR IMPATT impact ionization conversion efficiency noise measure power density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India. The authors are grateful to MHRD, Govt. of India for providing research assistantship to G.C.G. and also thank Monojit Mitra, Professor of Electronics and Telecommunication Engineering Department, IIEST, Shibpur for necessary technical discussion and encouragement to do this work.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    J.H.W. Chris and S.B. Richard, Mater. Today 11, 22 (2008).CrossRefGoogle Scholar
  2. 2.
    W.J. Yost, in Materials Research Society Symposium Proceedings (2007), pp. 1–13Google Scholar
  3. 3.
    R. Lang, C. Wort, R. Balmer, I. Friel, and G. Scarsbrook, in 2nd International Industrial Diamond Conference (2007)Google Scholar
  4. 4.
    J. Sengupta, G.C. Ghivela, A. Gajbhiye, and M. Mitra, Int. J Electron. Lett. 4, 134 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Mukherjee and S.K. Roy, Curr. Appl. Phys. 10, 646 (2010).CrossRefGoogle Scholar
  6. 6.
    H.K. Gummel and J.L. Blue, IEEE Trans. Electron Devices 14, 569 (1967).CrossRefGoogle Scholar
  7. 7.
    S.K. Roy, M. Sridharan, R. Ghosh, and B.B. Pal, in Proceedings of the 1st Conference on Numerical Analysis of Semiconductor Devices (NASECODE I) (1979), pp. 266–274Google Scholar
  8. 8.
    A. Acharyya and J.P. Banerjee, Terahertz Sci. Technol. 5, 97 (2012).Google Scholar
  9. 9.
    A.K. Panda and V.M. Rao, in Proceedings of Asia-Pacific Microwave Conference (2009), pp. 1569–1572Google Scholar
  10. 10.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New Jersey: Wiley, 2007), p. 489.Google Scholar
  11. 11.
    S.M. Sze and R.M. Ryder, Proc. IEEE Special Issue Microwave Semicond. Devices 59, 1140 (1971).Google Scholar
  12. 12.
    Electronic Archive, New semiconductor Materials, Characteristics and Properties. (Ioffe Institute, 2017). Accessed 10 July 2017
  13. 13.
    H.K. Gummel and D.L. Scharfetter, Bell Syst. Technol. J. 45, 1802 (1966).CrossRefGoogle Scholar
  14. 14.
    A. Acharyya and J.P. Banerjee, Appl. Nanosci. 4, 1 (2014).CrossRefGoogle Scholar
  15. 15.
    B. Carnahan, H.A. Luther, and O.W. James, Applied Numerical Methods, 1st ed. (New York: Wiley, 1969), pp. 361–365.Google Scholar
  16. 16.
    M. Mukherjee and S.K. Roy, IEEE Trans. Electron Devices 56, 1411 (2009).CrossRefGoogle Scholar
  17. 17.
    J.K. Mishra, G.N. Dash, S.R. Pattanaik, and I.P. Mishra, Solid State Electron. 48, 401 (2004).CrossRefGoogle Scholar
  18. 18.
    G.N. Dash, J.K. Mishra, and A.K. Panda, Solid State Electron. 39, 1473 (1996).CrossRefGoogle Scholar
  19. 19.
    A.K. Panda, D. Pavlidis, and E. Alekseev, IEEE Trans. Electron Devices 48, 1473 (2001).CrossRefGoogle Scholar
  20. 20.
    A. Reklaitis and L. Reggiani, J. Appl. Phys. 97, 043709 (2005).CrossRefGoogle Scholar
  21. 21.
    J.K. Mishra, A.K. Panda, and G.N. Dash, IEEE Trans. Electron Devices 44, 2143 (1997).CrossRefGoogle Scholar
  22. 22.
    P.K. Bandyopadhyay, S. Chakraborty, A. Biswas, A. Acharyya, and A.K. Bhattacharjee, J. Comput. Electron. 15, 646 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Ghosh, S. Ghosh, P.K. Bandyopadhyay, A. Biswas, A.K. Bhattacharjee, and A. Acharyya, J. Active Passive Electron. Dev. 13, 185 (2018).Google Scholar
  24. 24.
    P.K. Bandyopadhyay, A. Biswas, A.K. Bhattacharjee, and A. Acharyya, IETE J Res. (2018). Scholar
  25. 25.
    A. Biswas, S. Sinha, A. Acharyya, A. Banerjee, S. Pal, H. Satoh, and H. Inokawa, J. Infrared Millim. Terahertz Waves 39, 954 (2018).CrossRefGoogle Scholar
  26. 26.
    T.E. Seidel, W.C. Niehaus, and D.E. Iglesias, IEEE Trans. Electron Devices 21, 523 (1974).CrossRefGoogle Scholar
  27. 27.
    J.L. Blue, in IEEE Device Research Conference (1970)Google Scholar
  28. 28.
    J.C. Irvin, D.J. Coleman, W.A. Johnson, I. Tatsuguchi, D.R. Decker, and C.N. Dunn, Proc. IEEE 59, 1212 (1971).CrossRefGoogle Scholar
  29. 29.
    P.M. Mock and R.J. Trew, in IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits (1989), pp. 383–389Google Scholar
  30. 30.
    M. Mitra, A. Ganguly, S.K. Roy, and J.P. Banerjee, IETE Tech Rev. 10, 351 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.EMI-EMC Lab, Department of Electronics and Communication EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations