Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 991–996 | Cite as

Temperature Gradient Designing and Optical Properties of SrI2 and SrI2:Eu Crystals Grown by Edge-Defined Film-Fed Growth (EFG) Method

  • Qian Yao
  • Junying Zhang
  • Lintao Liu
  • Weimin Dong
  • Jing LiEmail author
  • Jiyang Wang
Article
  • 27 Downloads

Abstract

In this work, SrI2 and SrI2:Eu5% single crystals with size of Ø10 × 60 mm3 and Ø10 × 30 mm3 were successfully grown by edge-defined film-fed growth (EFG) method. In the crystal growth process, the crack and turbidity of the crystal were solved by designing a temperature field, thereby optimizing crystal quality and obtaining crack-free crystals. X-ray diffraction analysis was performed on the grown crystals, and the optical properties of these crystals have been investigated at room temperature. Under the excitation of ultraviolet (UV) light, the crystals exhibit a single luminescence peak centered at 435 nm (λex = 350 nm), and the photoluminescence (PL) decay time is 0.594 μs. In addition, the designed temperature field also provides a reference value for other crystals grown by EFG method.

Keywords

Crystal growth scintillation materials temperature field optical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant Numbers 51772171 and 51272130).

References

  1. 1.
    E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, and H.U. Güde, Appl. Phys. Lett. 79, 1573 (2001).CrossRefGoogle Scholar
  2. 2.
    K.S. Shah, J. Glodo, M. Klugerman, W.M. Higgins, T. Gupta, and P. Wong, IEEE Trans. Nucl. Sci. 51, 2395 (2004).CrossRefGoogle Scholar
  3. 3.
    N.J. Cherepy, S.A. Payne, S.J. Asztalos, and G. Hull, IEEE Trans. Nucl. Sci. 56, 873 (2010).CrossRefGoogle Scholar
  4. 4.
    R. Hofstadter, Phys. Rev. 74, 100 (1948).CrossRefGoogle Scholar
  5. 5.
    M. Nikla, A. Yoshikawab, A. Veddac, and T. Fukudab, J. Cryst. Growth 292, 416 (2006).CrossRefGoogle Scholar
  6. 6.
    N.J. Cherepy, G. Hull, A. Drobshoff, S.A. Payne, E. van Loef, C. Wilson, K. Shah, U.N. Roy, A. Burger, L.A. Boatner, W.-S. Choong, and W.W. Moses, Phys. Lett. 92, 083508 (2008).Google Scholar
  7. 7.
    C.M. Wilson, E.V. Van Loef, J. Glodo, N. Cherepy, G. Hull, S. Payne, W.S. Choong, W. Moses, and K.S. Shah, Proc. SPIE 7079, 707917 (2008).CrossRefGoogle Scholar
  8. 8.
    R. Hawrami, A. Burger, M.D. Aggarwal, N.J. Cherepy, and S.A. Payne, Proc. SPIE 7079, 70790Y (2008).CrossRefGoogle Scholar
  9. 9.
    C. Guguschev, G. Calvert, S. Podowitz, A. Vailionis, A. Yeckel, and R.S. Feigelson, J. Cryst. Growth 404, 231 (2014).CrossRefGoogle Scholar
  10. 10.
    G. Calvert, C. Guguschev, A. Burger, M. Groza, J.J. Derby, and R.S. Feigelson, J. Cryst. Growth 455, 143 (2016).CrossRefGoogle Scholar
  11. 11.
    Y. Yokota, K. Nishimoto, S. Kurosawa, D. Totsuka, and A. Yoshikawa, J. Cryst. Growth 375, 49 (2013).CrossRefGoogle Scholar
  12. 12.
    K. Yang, M. Zhuravleva, and C.L. Melcher, J. Lumin. 132, 1824 (2012).CrossRefGoogle Scholar
  13. 13.
    N.V. Rebrova, A.Y. Grippa, A.S. Pushak, T.E. Gorbacheva, V.Yu. Pedash, O.G. Viagin, V.L. Cherginets, V.A. Tarasov, V.V. Vistovskyy, A.P. Vas’kiv, and S.V. Myagkota, J. Cryst. Growth 466, 39 (2017).CrossRefGoogle Scholar
  14. 14.
    L. Stand, M. Zhuravleva, B. Chakoumakos, J. Johnson, M. Loyd, Y. Wu, M. Koschan, and C.L. Melcher, J. Cryst. Growth 486, 162 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Qian Yao
    • 1
  • Junying Zhang
    • 1
  • Lintao Liu
    • 1
  • Weimin Dong
    • 1
  • Jing Li
    • 1
    Email author
  • Jiyang Wang
    • 1
  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations