EDTA-Complexing Sol–Gel Synthesis of LaFeO3 Nanostructures and Their Gas-Sensing Properties

  • Fan Tong
  • Ye Zhao
  • Xiao Qu
  • Rong Yang
  • Maohua Wang


Perovskite type LaFeO3 have now been successfully synthesized by a sol–gel process based on an ethylene diamine tetraacetic acid (EDTA)-complexing method. The structure and morphology of the products were characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Based on the experimental results, the average crystallite size of the LaFeO3 nanostructures can be increased from 20.0 nm to 34.1 nm as the calcination temperature of the precursor increased, ranging from 500°C to 800°C. When the molar ratio of EDTA:total metal ions reaches 1.2:1, the prepared LaFeO3 seems to have a nearly spherical morphology, and the sample has a relatively uniform particle size distribution with an average size of about 40 nm. After comprehensive analysis, gas sensor research shows that LaFeO3 nanostructure-based sensors have potential applications in acetone gas monitoring. When exposed to 100 ppm acetone, the response of LaFeO3 nanostructures at 250°C was 11.7, the response time was 9 s, and the recovery time was 15 s. Thus, the facile synthesis route used in this study for synthesizing LaFeO3 nanoparticles could be expected to be extended for the preparation of binary metal oxide gas-sensing materials.


LaFeO3 nanostructure EDTA complexing sol–gel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by Changzhou Science, Technology Innovation Project.

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    F. Bidrawn, G. Kim, N. Aramrueang, J.M. Vohas, and R.J. Gorte, J. Power Sources 195, 720 (2010).CrossRefGoogle Scholar
  2. 2.
    T.H. Shin, S. Ida, and T. Ishihara, J. Am. Chem. Soc. 133, 19399 (2011).CrossRefGoogle Scholar
  3. 3.
    L.M. Liu, K.N. Sun, X.K. Li, M. Zhang, Y.B. Liu, N.Q. Zhang, and X.L. Zhou, Int. J. Hydrogen Energy 37, 12574 (2012).CrossRefGoogle Scholar
  4. 4.
    Z.X. Wei, Y. Wang, J.P. Liu, C.M. Xiao, W.W. Zeng, and S.B. Ye, J. Mater. Sci. 48, 1117 (2013).CrossRefGoogle Scholar
  5. 5.
    W. Yang, R.D. Zhang, B.H. Chen, N. Bion, D. Duprez, L.W. Hou, H. Zhang, and S. Royer, Chem. Commun. 49, 4923 (2013).CrossRefGoogle Scholar
  6. 6.
    X. Ren, H.T. Yang, S. Gen, J. Zhou, T.Z. Yang, X.Q. Zhang, Z.H. Cheng, and S.H. Sun, Nanoscale 8, 752 (2016).CrossRefGoogle Scholar
  7. 7.
    D. Bayraktar, F. Clemens, S. Diethelm, T. Graule, and P. Holtappels, J. Eur. Ceram. Soc. 27, 2455 (2007).CrossRefGoogle Scholar
  8. 8.
    P. Song, Q. Wang, Z. Zhang, and Z.X. Yang, Sens. Actuators B Chem. 147, 248 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Zhao, Y.P. Li, X.W. Li, G.Y. Lu, L. You, X.S. Liang, F.M. Liu, T. Zhang, and Y. Du, Sens. Actuators 181, 802 (2013).CrossRefGoogle Scholar
  10. 10.
    Z.F. Dai, C.S. Lee, B.Y. Kim, C.H. Kwak, J.W. Yoon, H.M. Jeong, and J.H. Lee, Appl. Mater. Interfaces 6, 16217 (2014).CrossRefGoogle Scholar
  11. 11.
    O. Haas, U.F. Vogt, C. Soltmann, A. Braun, W.S. Yoon, X.Q. Yang, and T. Graule, Mater. Res. Bull. 44, 1397 (2009).CrossRefGoogle Scholar
  12. 12.
    T. Liu and Y.B. Xu, Mater. Chem. Phys. 129, 1047 (2011).CrossRefGoogle Scholar
  13. 13.
    F.T. Li, Y. Liu, Z.M. Sun, R.H. Liu, C.G. Kou, Y. Zhao, and D.S. Zhao, Mater. Lett. 65, 406 (2011).CrossRefGoogle Scholar
  14. 14.
    J.G. Deng, H.X. Dai, H.Y. Jiang, L. Zhang, G.Z. Wang, H. He, and C.T. Au, Environ. Sci. Technol. 44, 2618 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Khorasani-Motlagh, M. Noroozifar, and A. Ahanin-Jan, J. Iran. Chem. Soc. 9, 833 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Sadakane, T. Asanuma, J. Kubo, and W. Ueda, Chem. Mater. 17, 3546 (2005).CrossRefGoogle Scholar
  17. 17.
    J. Qin, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, and Y.Q. Liang, Sens. Actuators, B 209, 706 (2015).CrossRefGoogle Scholar
  18. 18.
    L. Zhang, H. Qin, P. Song, J. Hu, and M. Jiang, Mater. Chem. Phys. 98, 358 (2006).CrossRefGoogle Scholar
  19. 19.
    X. Liu, B. Cheng, H. Qin, P. Song, S. Huang, R. Zhang, J. Hu, and M. Jiang, J. Phys. Chem. Solids 68, 511 (2007).CrossRefGoogle Scholar
  20. 20.
    X. Liu, B. Cheng, J. Hu, H. Qin, and M. Jiang, Sens. Actuators, B 129, 53 (2008).CrossRefGoogle Scholar
  21. 21.
    Y.G. Cho, K.H. Choi, Y.R. Kim, J.S. Jung, and S.H. Lee, Bull. Korean Chem. Soc. 30, 1368 (2009).CrossRefGoogle Scholar
  22. 22.
    L.H. Sun, H.W. Qin, K.Y. Wang, M. Zhao, and J.F. Hu, Mater. Chem. Phys. 125, 305 (2011).CrossRefGoogle Scholar
  23. 23.
    C.H. Feng, S.P. Ruan, J.J. Li, B. Zou, J.Y. Luo, W.Y. Chen, W. Dong, and F.Q. Wu, Sens. Actuators, B 155, 232 (2011).CrossRefGoogle Scholar
  24. 24.
    C. Doroftei, P.D. Popa, and F. Iacomi, Sens. Actuators, B 161, 977 (2012).CrossRefGoogle Scholar
  25. 25.
    K. Fan, H. Qin, L. Wang, L. Ju, and J. Hu, Sens. Actuators, B 177, 265 (2013).CrossRefGoogle Scholar
  26. 26.
    P.J. Yao, J. Wang, W.L. Chu, and Y.W. Hao, J. Mater. Sci. 48, 441 (2013).CrossRefGoogle Scholar
  27. 27.
    C. Shi, H. Qin, M. Zhao, X. Wang, L. Li, and J. Hu, Sens. Actuators, B 190, 25 (2014).CrossRefGoogle Scholar
  28. 28.
    A. Benali, S. Azizi, M. Bejar, E. Dhahri, and M.F.P. Graca, Ceram. Int. 40, 14367 (2014).CrossRefGoogle Scholar
  29. 29.
    P. Song, H. Zhang, D. Han, J. Li, Z. Yang, and Q. Wang, Sens. Actuators, B 196, 140 (2014).CrossRefGoogle Scholar
  30. 30.
    H. Zhang, P. Song, D. Han, and Q. Wang, Phys. E 63, 21 (2014).CrossRefGoogle Scholar
  31. 31.
    H.X. Xiao, C. Xue, P. Song, J. Li, and Q. Wang, Appl. Surf. Sci. 337, 65 (2015).CrossRefGoogle Scholar
  32. 32.
    J. Qin, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, and Y.Q. Liang, Sens. Actuators, B 209, 706 (2015).CrossRefGoogle Scholar
  33. 33.
    J. Qin, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, and Y.Q. Liang, J. Alloys. Compd. 635, 194 (2015).CrossRefGoogle Scholar
  34. 34.
    E.S. Cao, Y.Q. Yang, T.T. Cui, Y.J. Zhang, W.T. Hao, L. Sun, H. Peng, and X. Deng, Appl. Surf. Sci. 393, 134 (2017).CrossRefGoogle Scholar
  35. 35.
    Z.P. Shao and S.M. Haile, Nature 431, 170 (2004).CrossRefGoogle Scholar
  36. 36.
    Z.P. Shao, W.S. Wang, Y. Cong, H. Dong, J.H. Tong, and G.X. Xiong, J. Membr. Sci. 172, 177 (2000).CrossRefGoogle Scholar
  37. 37.
    C. Zhang, J. Shi, X. Yang, L. De, and X. Wang, Mater. Chem. Phys. 123, 551 (2010).CrossRefGoogle Scholar
  38. 38.
    Y.E. Zhao, C.Y. Cai, Y.Y. Luo, and Z.H. He, Novel Magn. 17, 383 (2004).Google Scholar
  39. 39.
    D. Koodynska, J. Ryczkowski, and Z. Hubicki, Eur. Phys. J. Spec. Top. 54, 339 (2008).CrossRefGoogle Scholar
  40. 40.
    D.W.L. Griffiths, H.E. Hallam, and W.J. Thomas, J. Catal. 17, 18 (1970).CrossRefGoogle Scholar
  41. 41.
    L. Zhang, H.W. Qin, P. Song, J.F. Hu, and M.H. Jiang, Mater. Chem. Phys. 98, 358 (2006).CrossRefGoogle Scholar
  42. 42.
    H.X. Xiao, C. Xue, P. Song, J. Li, and Q. Wang, Appl. Surf. Sci. 337, 65 (2015).CrossRefGoogle Scholar
  43. 43.
    Y. Tong, Y. Zhang, B. Jiang, J. He, X. Zheng, and Q. Liang, IEEE Sens. J. 17, 2404 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Fan Tong
    • 1
  • Ye Zhao
    • 1
  • Xiao Qu
    • 1
  • Rong Yang
    • 1
  • Maohua Wang
    • 1
  1. 1.School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations