Journal of Electronic Materials

, Volume 48, Issue 2, pp 977–981 | Cite as

Numerical Modeling of 193-nm Excimer Laser Ablation on CR-39 Polymer

  • Rana M. TahaEmail author
  • Hussein A. Jawad


Laser polymer processing has evolved into an important field of applied and fundamental research. Allyl diglycol carbonate or CR-39 is considered an important polymer for use in optical and medical applications since it is a hard and infusible thermoset plastic that is insoluble in all solvents. The temperature distribution of CR-39 when subjected to irradiation during 193-nm excimer laser ablation was investigated. An effective simulation was developed to reflect the effects of polymer thermal diffusion, laser fluence, beam geometry, and number of pulses. A two-dimensional finite element model was used to predict the temperature distribution and ablation depth in the plastic CR-39 polymer under the 193-nm laser ablation process. The photochemical threshold ablation fluence was 750 mJ/cm2 for a single laser pulse, but dropped to 240 mJ/cm2 for repetitive laser pulses. At higher fluence, thermal effects exhibited a slight contribution to the ablation process. For fluence ≥ 750 mJ/cm2, the ablation depth increased abruptly. It can thus be inferred that the rate of temperature increase with pulse number increased concomitantly with the fluence. Thus, thermal effects are a significant factor in the ablation process.


Excimer laser ablation CR-39 ablation threshold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Srinivasan and V. Mayne-Banton, Appl. Phys. Lett. 41, 576 (1982).CrossRefGoogle Scholar
  2. 2.
    Y. Kawmura, K. Toyoda, and S. Namba, Appl. Phys. Lett. 40, 374 (1982).CrossRefGoogle Scholar
  3. 3.
    R. Srinivasan, B. Braren, R.W. Dreyfus, L. Hadel, and D.E. Seeger, J. Opt. Soc. Am. B 3, 5 (1986).CrossRefGoogle Scholar
  4. 4.
    P.R. Herman, B. Chen, and D.J. Moore, Mater. Res. Soc. Symp. Proc. 285, 163 (1993).CrossRefGoogle Scholar
  5. 5.
    F. Wagner and P. Hoffmann, Appl. Phys. A 69, S841 (1999).CrossRefGoogle Scholar
  6. 6.
    J. Yip, K. Chan, K.M. Sin, and KSh Lau, Polym. Int. 53, 634 (2004).CrossRefGoogle Scholar
  7. 7.
    H.R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, Radiat. Eff. Defects Solids 163, 11 (2008).CrossRefGoogle Scholar
  8. 8.
    P. Parvin, M. Refahizadeh, S.Z. Mortazvi, K. Silakhori, A. Mahdiloo, and P. Aghaii, Appl. Surf. Sci. 292, 247 (2014).CrossRefGoogle Scholar
  9. 9.
    J. Kim and X. Xu, J. Laser Appl. 15, 4 (2003).CrossRefGoogle Scholar
  10. 10.
    W. Kam, Y.S. Ong, W.H. Lim, and R. Zakaria, Opt. Laser Eng. 55, 1 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Mass, B. Liu, S. Hajela, Y. Huang, X. Gong, and W.J. Chappell, Proc. IEEE PP, 99 (2017).Google Scholar
  12. 12.
    W. Li and E. Sancaktar, J. Laser Appl. 29, 1 (2017).Google Scholar
  13. 13.
    M. Rosenberger, S. Hessler, H. Pauer, M. Girschikofsky, G. L. Roth, B. Adelmann, H. Woern, B. Schmauss, and R. Hellmann, Integrated optics: devices, materials and technologies XXI, in Proceedings of SPIE, vol. 10106, p. 101061N-1 (2017).Google Scholar
  14. 14.
    M.F. Zaki, Braz. J. Phys. 38, 4 (2008).CrossRefGoogle Scholar
  15. 15.
    P.E. Dyer, Photochemical Processing of Electronic Material (London: Academic, 1992).Google Scholar
  16. 16.
    S. Lazare and V. Granier, Laser Chem. 10, 25 (1989).CrossRefGoogle Scholar
  17. 17.
    R. Srinivasan and B. Braren, Chem. Rev. 89, 6 (1989).CrossRefGoogle Scholar
  18. 18.
    A. Miotello and P.M. Ossi, eds., Springer Series in Material Chemistry, Vol. 130 (Berlin: Springer, 2009).Google Scholar
  19. 19.
    S.R. Cain, F.C. Burns, and C.E. Otis, J. Appl. Phys. 71, 4107 (1992).CrossRefGoogle Scholar
  20. 20.
    N.P. Furzikov, Appl. Phys. Lett. 56, 1638 (1990).CrossRefGoogle Scholar
  21. 21.
    G.C.D. D’Coute and S.V. Babu, J. Appl. Phys. 76, 3052 (1994).CrossRefGoogle Scholar
  22. 22.
    ANSYS v11 multiphysics software, Release 11.0sp1 UP20070830.Google Scholar
  23. 23.
    J.G. Lunney, Appl. Surf. Sci. 86, 79 (1995).CrossRefGoogle Scholar
  24. 24.
    M.J. Weber, Handbook of Optical Materials (Boca Raton: CRC Press, 2002).CrossRefGoogle Scholar
  25. 25.
    ASM international, Characterization and Failure Analysis of Plastics (Materials park: ASM international, 2003).Google Scholar
  26. 26.
    M. Refahizadeh, A. Majdabadi, P. Parvin, K. Silakhori, S.Z. Mortazavi, A. Mehdilo, and P. Aghaii, Opt. Mater. Express 5, 1543 (2015).CrossRefGoogle Scholar
  27. 27.
    H.D. Wolpert, The Photonics Design and Application Handbook (Pittsfield: Laurin, 1991).Google Scholar
  28. 28.
    B. Mansouri, P.Parvin, and K.J.A. Ooi,
  29. 29.
    R.S. Kappes, F. Schönfeld, Ch Li, A.A. Golriz, M. Nagel, Th Lippert, H. Butt, and J.S. Gutmann, SpringerPlus 3, 489 (2014).CrossRefGoogle Scholar
  30. 30.
    J.E. Andrew, P.E. Dyer, D. Forster, and P.H. Key, Appl. Phys. Lett. 43, 717 (1983).CrossRefGoogle Scholar
  31. 31.
    R. Srinivasan and B. Braren, J. Polym. Sci. Polym. Chem. 22, 2601 (1984).CrossRefGoogle Scholar
  32. 32.
    V. Srinivasan, M.A. Smrtic, and S.V. Babu, J. Appl. Phys. 59, 11 (1986).CrossRefGoogle Scholar
  33. 33.
    C.-R. Yang, Y.S. Hsieh, G.Y. Hwang, and Y.D. Lee, J. Micrmech. Microeng. 14, 4 (2004).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Institute of Laser for Postgraduate StudiesUniversity of BaghdadBaghdadIraq

Personalised recommendations