Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 925–929 | Cite as

Fabrication and Characterization of Superconducting Bilayer (Al/Ti) Transition-Edge Sensor Bolometer Array

  • Kamal AhmadEmail author
  • Jie Liu
  • Qichun Liu
  • Gang Li
  • Jianshe Liu
  • Wei Chen
Article
  • 19 Downloads

Abstract

A four-by-four transition-edge sensor (TES) bolometer array based on an Al/Ti bilayer on an Si3N4 substrate for thermal connection, showing an unbiased transition temperature of 1.2 K, was fabricated and characterized. Formation of the Al/Ti bilayer with tetragonal structure was confirmed by x-ray diffraction analysis. The surface roughness of 3.11 nm calculated by atomic force microscopy was found to be negligible compared with the particle size (19.66 nm), indicating a smooth surface. The smoothness of the resistance–temperature (RT) curve corresponds to the smoothness of the surface of the bilayer sensor, and the superconducting transition curve of the suspended bilayer TES was designed with a biased Tc of 0.45 K and ΔTc = 2 mK. Such TES bolometer arrays are suitable for astrophysical observations and are extensively used in cosmic microwave background polarization detection.

Keywords

TES sensor bolometer AFM XRD 

Abbreviations

XRD

X-ray diffraction

AFM

Atomic force microscopy

TES

Transition-edge sensor

nETF

Negative electrothermal feedback

LPCVD

Low-pressure chemical vapor deposition

HMDS

Hexamethyldisilazane

TEM

Transmission electron microscopy

THz

Terahertz

FIR

Far-infrared

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The National Natural Science Foundation of China supported this work. The State Key Program supports the project for Basic Research of China.

References

  1. 1.
    W.S. Holland, D. Bintley, E.L. CHapin, A. Chrysostomou, and G.R. Davis, Mon. Not. R. Astron. Soc. 430, 2513 (2013).CrossRefGoogle Scholar
  2. 2.
    S. Das, T.A. Marriage, and P.A.R. Ade, Astrophys. J. 792, 62 (2011).CrossRefGoogle Scholar
  3. 3.
    A.T. Lee, P.L. Richards, S.W. Nam, and K.D. Cabrera Band Irwin, Appl. Phys. Lett. 69, 1801 (1996).CrossRefGoogle Scholar
  4. 4.
    J.T. Skidmore, J. Gildemeister, A.T. Lee, M.J. Myers, and P.L. Richards, Appl. Phys. Lett. 82, 469 (2003).CrossRefGoogle Scholar
  5. 5.
    J.S. Penttila, H. Sipola, P. Helisto, and H. Seppa, Supercond. Sci. Technol. 193, 19 (2006).Google Scholar
  6. 6.
    P. Helisto, J.S. Penttila, H. Sipola, L. Grönberg, F. Maibaum, A. Lukkanen, and H. Seppa, IEEE Trans. Appl. Supercond. 17, 310 (2007).CrossRefGoogle Scholar
  7. 7.
    K.D. Irwin and G.C. Hilton, “Transition-edge sensors,” Cryogenic particle detection, ed. C. Enss (Berlin: Springer, 2005).Google Scholar
  8. 8.
    A.E. Lita, A.J. Miller, and S.W. Nam, Opt. Express 16, 3032 (2008).CrossRefGoogle Scholar
  9. 9.
    M.J. Myers, W. Holzapfel, A.T. Lee, O.R. Brient, P.L. Richards, and H.T. Tran, Appl. Phys. Lett. 86, 114103 (2005).CrossRefGoogle Scholar
  10. 10.
    B. Westbrook, A. Lee, X. Meng, A. Suzuki, K. Arnold, E. Shirokoff, E. George, F. Aubin, M. Dobbs, K. Macdermid, S. Hanany, K. Raach, A. Aboobaker, J. Hubmayr, T. Oshima, M. Kawamura, and K. Kohno, J. Low Temp. Phys. 167, 885 (2012).CrossRefGoogle Scholar
  11. 11.
    J.A. Brevik, R.W. Aikin, and M. Amiri, in Proceeding of SPIE 7741, Millimeter, Submillimeter, and Far-infrared Detectors and Instrumentation for Astronomy V, 77411H (2010).Google Scholar
  12. 12.
    E.M. George, P. Ade, and K.A. Aird, in Proceeding of SPIE 8452, Millimeter, Submillimeter, and Far-infrared Detectors and Instrumentation for Astronomy VI, 84521F (2012).Google Scholar
  13. 13.
    E.M. Leitch, Nature 420, 763 (2002).CrossRefGoogle Scholar
  14. 14.
    S.H. Moseley, J.C. Mather, and D. McCammon, J. Appl. Phys. 56, 257 (1984).CrossRefGoogle Scholar
  15. 15.
    J.E Sadleir, Thesis, Superconducting Transition Edge Sensor Physics, University of Illinois, 2010.Google Scholar
  16. 16.
    M. Tinkham and V. Emery, Introduction to Superconductivity, 2nd ed. (New York: Dover, 1996), p. 308.Google Scholar
  17. 17.
    R. Gonzalez-Arrabal, J. Anguita, and F. Briones, J. Low Temp. Phys. 151, 239 (2008).CrossRefGoogle Scholar
  18. 18.
    Q. Zhan, G. He, and W. Dong, in Proceeding of 10th International Workshop on Low Temperature Electronics, (2013).Google Scholar
  19. 19.
    Q. Zhang, W. Dong, and T. Wang, Chin. J. Low Temp. Phys. 36, 7 (2014).Google Scholar
  20. 20.
    J.A. Brevik, R.W. Aikin, M. Amiri, S.J. Benton, J.J. Bock, J.A. Bonetti, B. Burger, C.D. Dowell, L. Duband, J.P. Filippini, and S.R. Golwala, Initial performance of the BICEP2 antenna-coupled superconducting bolometers at the South Pole, in Proceeding of SPIE 7741, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, 77411H (2010).Google Scholar
  21. 21.
    B. Westbrook, A. Lee, X. Meng, A. Suzuki, K. Arnold, E. Shirokoff, E. George, F. Aubin, M. Dobbs, K. MacDermid, and S. Hanany, J. Low Temp. Phys. 167, 885 (2012).CrossRefGoogle Scholar
  22. 22.
    A.T. Lee, P.L. Richards, S.W. Nam, B. Cabrera, and K.D. Irwin, Appl. Phys. Lett. 69, 1801 (1996).CrossRefGoogle Scholar
  23. 23.
    Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, J. Chin. Sci. Bull. 59, 2292 (2014).CrossRefGoogle Scholar
  24. 24.
    J. Beyer, Supercond. Sci. Technol. 23, 10 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Kamal Ahmad
    • 1
    Email author
  • Jie Liu
    • 1
  • Qichun Liu
    • 1
  • Gang Li
    • 1
  • Jianshe Liu
    • 1
  • Wei Chen
    • 1
  1. 1.Tsinghua National Laboratory for Information Science and Technology, Department of Microelectronics and NanoelectronicsInstitute of Microelectronics, Tsinghua UniversityBeijingChina

Personalised recommendations