Journal of Electronic Materials

, Volume 48, Issue 2, pp 904–915 | Cite as

Probing the Electrochemical Properties of Flower Like Mesoporous MoS2 in Different Aqueous Electrolytes

  • Neha Kanaujiya
  • Nagesh Kumar
  • Yogesh SharmaEmail author
  • G. D. VarmaEmail author


In the present work, flower-like mesoporous MoS2 has been synthesized via a one step hydrothermal approach. The electrochemical performance of synthesized flower-like MoS2 nanostructures for supercapacitor applications has been probed via cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy in 1 M H2SO4 (acidic electrolyte), 1 M Na2SO4 (neutral electrolyte) and 2 M KOH (basic electrolyte) electrolytes using a three electrodes configuration. On the basis of electrochemical measurements, it has been observed that as-prepared flower-like MoS2 exhibits specific capacitances of 225 F g−1, 205 F g−1 and 123 F g−1 in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes at 1 A g−1, respectively. Moreover, for the MoS2 electrode the diffusion coefficients in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes are found to be 8.52 × 10−10 cm2 s−1, 5.41 × 10−10 cm2 s−1 and 8.35 × 10−10 cm2 s−1, respectively. Further, the relaxation time constants (τ), which represent how quick a supercapacitor system can deliver stored energy at high power, are found to be 37 ms, 77 ms and 1.49 s for as synthesized MoS2 in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes, respectively. However, the capacity retention/coulombic efficiency of a MoS2 electrode in 1 M H2SO4, 1 M Na2SO4 and 2MKOH is found to be ∼ 30%/89%, 89%/94% and 86%/92%, respectively, after 1000 successive cycles at 2 A g−1. Our results suggest that a pristine flower like MoS2 is a good material to design a high performance supercapacitor device, which exhibits stable electrochemical performance in 1 M Na2SO4 electrolytes. The detailed electrochemical behavior of as synthesized samples has been thoroughly described in this paper. We believe our findings would be helpful in the designing of flower-like MoS2 based practical high performance supercapacitor devices.


Supercapacitor electrolyte MoS2 specific capacitance 



Author N. Kanaujiya highly acknowledges MHRD (Govt. of India) for research fellowship. Author N. Kumar acknowledges the financial support from CSIR, New Delhi, India, for RA Fellowship under scheme No. 22(658)/14/EMR-II.


  1. 1.
    H. Xiao, S. Yao, H. Liu, F. Qu, X. Zhang, and X. Wu, Prog. Nat. Sci. Mater. Int. 26, 271 (2016).CrossRefGoogle Scholar
  2. 2.
    L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C 118, 22865 (2014).CrossRefGoogle Scholar
  3. 3.
    S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, ACS Appl. Mater. Interfaces. 5, 2188 (2013).CrossRefGoogle Scholar
  4. 4.
    R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, R. Omar, J.G. Manjunatha, M.M. Ishak, N.H. Basri, and B.N.M. Dolah, Int. J. Electrochem. Sci. 8, 257 (2013).Google Scholar
  5. 5.
    N. Kumar, Y.C. Yu, Y.H. Lu, and T.Y. Tseng, J. Mater. Sci. 51, 2320 (2016).CrossRefGoogle Scholar
  6. 6.
    T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D.G. Nocera, Chem. Rev. 110, 6474 (2010).CrossRefGoogle Scholar
  7. 7.
    A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources 157, 11 (2006).CrossRefGoogle Scholar
  8. 8.
    H. Jiang, P.S. Lee, and C. Li, Energy Environ. Sci. 6, 41 (2013).CrossRefGoogle Scholar
  9. 9.
    N. Kumar, A. Kumar, S. Chandrasekaran, and T.Y. Tseng, J. Clean Energy Technol. 6, 51 (2018).CrossRefGoogle Scholar
  10. 10.
    S.S. Karade, D.P. Dubal, and B.R. Sankapal, RSC Adv. 6, 39159 (2016).CrossRefGoogle Scholar
  11. 11.
    D.T. Dam, X. Wang, and J.M. Lee, ACS Appl. Mater. Interfaces 6, 8246 (2014).CrossRefGoogle Scholar
  12. 12.
    N. Kumar, C.W. Huang, P.J. Yen, W.W. Wu, K.H. Wei, and T.Y. Tseng, RSC Adv. 6, 60578 (2016).CrossRefGoogle Scholar
  13. 13.
    F. Barzegar, D.Y. Momodu, O.O. Fashedemi, A. Bello, J.K. Dangbegnona, and N. Manyala, RSC Adv. 5, 107482 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).CrossRefGoogle Scholar
  15. 15.
    Z.S. Iro, C. Subramani, and S.S. Dash, Int. J. Electrochem. Sci. 11, 10628 (2016).CrossRefGoogle Scholar
  16. 16.
    B. Hsia, Ph.D. Thesis, University of California, Berkeley (2013).Google Scholar
  17. 17.
    Q. Ke and J. Wang, J. Materiomics 2, 37 (2016).CrossRefGoogle Scholar
  18. 18.
    M.A. Bissetta, S.D. Worrall, I.A. Kinloch, and R.A.W. Dryfe, Electrochim. Acta 201, 30 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, and Y.W. Yang, Nanomaterials 5, 1667 (2015).CrossRefGoogle Scholar
  20. 20.
    L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai, and P.M. Ajayan, Small 9, 2905 (2013).CrossRefGoogle Scholar
  21. 21.
    M.A. Bissett, I.A. Kinloch, and R.A.W. Dryfe, ACS Appl. Mater. Interfaces. 7, 17388 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Ramadoss, T. Kim, G.S. Kima, and S.J. Kim, New J. Chem. 38, 2379 (2014).CrossRefGoogle Scholar
  23. 23.
    N. Zheng, X. Bu, and P. Feng, Nature 426, 428 (2003).CrossRefGoogle Scholar
  24. 24.
    K.J. Huang, L. Wang, Y.J. Liu, Y.M. Liu, H.B. Wang, T. Gan, and L.L. Wang, Int. J. Hydrog. Energy 38, 14027 (2013).CrossRefGoogle Scholar
  25. 25.
    L. Chen, F. Chen, N. Tronganh, M. Lu, and Y. Jiang, J. Mater. Res. 31, 3151 (2016).CrossRefGoogle Scholar
  26. 26.
    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
  27. 27.
    S. Vaquero, J. Palma, M. Anderson, and R. Marcilla, Int. J. Electrochem. Sci. 8, 10293 (2013).Google Scholar
  28. 28.
    X. Zhou, B. Xu, Z. Lin, D. Shu, and L. Ma, J. Nanosci. Nanotechnol. 14, 7250 (2014).CrossRefGoogle Scholar
  29. 29.
    X. Wang, J. Ding, S. Yao, X. Wu, Q. Feng, Z. Wang, and B. Geng, J. Mater. Chem. A 2, 15958 (2014).CrossRefGoogle Scholar
  30. 30.
    N. Kanaujiya, N. Kumar, A.K. Srivastava, Y. Sharma, and G.D. Varma, J. Electroanal. Chem. 824, 226 (2018).CrossRefGoogle Scholar
  31. 31.
    X. Xie, C. Zhang, M.B. Wu, Y. Tao, W. Lv, and Q.H. Yang, Chem. Commun. 49, 11092 (2013).CrossRefGoogle Scholar
  32. 32.
    C. Wei, W. He, X. Zhang, S. Liu, C. Jin, S. Liu, and Z. Huang, RSC Adv. 5, 28662 (2015).CrossRefGoogle Scholar
  33. 33.
    M. Chen, Y. Dai, J. Wang, Q. Wang, Y. Wang, X. Cheng, and X. Yan, J. Alloys Compd. 696, 900 (2017).CrossRefGoogle Scholar
  34. 34.
    X. Li, A. Tang, J. Li, L. Guan, G. Dong, and F. Teng, Nanoscale Res. Lett. 11, 171 (2016).CrossRefGoogle Scholar
  35. 35.
    S. Han, K. Liu, L. Hu, F. Teng, P. Yu, and Y. Zhu, Sci. Rep. 7, 43599 (2017).CrossRefGoogle Scholar
  36. 36.
    S.V.P. Vattikuti and C. Byon, J. Nanomater. 2015, 1 (2015).Google Scholar
  37. 37.
    S. Kumar, V. Sharma, K. Bhattacharyya, and V. Krishnan, New J. Chem. 40, 5185 (2016).CrossRefGoogle Scholar
  38. 38.
    X. Zhu, C. Yang, F. Xiao, J. Wang, and X. Su, New J. Chem. 39, 683 (2015).CrossRefGoogle Scholar
  39. 39.
    W. Xu, T. Wang, Y. Yu, and S. Wang, J. Alloys Compd. 689, 460 (2016).CrossRefGoogle Scholar
  40. 40.
    J. Mohanraj, V. Velmuruga, S. Sathiyan, and S. Sivabalan, Opt. Commun. 406, 139 (2018).CrossRefGoogle Scholar
  41. 41.
    D. Gao, M. Si, J. Li, J. Zhang, Z. Zhang, Z. Yang, and D. Xue, Nanoscale Res. Lett. 8, 129 (2013).CrossRefGoogle Scholar
  42. 42.
    R. Zhang, Y. Li, J. Qi, and D. Gao, Nanoscale Res. Lett. 9, 586 (2014).CrossRefGoogle Scholar
  43. 43.
    L. Cao, M. Lu, and H.L. Li, J. Electrochem. Soc. 152, A871 (2005).CrossRefGoogle Scholar
  44. 44.
    K. Xia, Q. Gao, J. Jiang, and J. Hu, Carbon 46, 1718 (2008).CrossRefGoogle Scholar
  45. 45.
    D. Saha, Y. Li, Z. Bi, J. Chen, J.K. Keum, D.K. Hensley, H.A. Grappe, H.M. Meyer, S. Dai, M.P. Paranthaman, and A.K. Naskar, Langmuir 30, 900 (2014).CrossRefGoogle Scholar
  46. 46.
    H.T. Das, K. Mahendraprabhu, T. Maiyalagan, and P. Elumalai, Sci. Rep. 7, 15342 (2017).CrossRefGoogle Scholar
  47. 47.
    H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, and H. Wan, J. Power Sources 248, 28 (2014).CrossRefGoogle Scholar
  48. 48.
    N. Kumar, A. Kumar, G.M. Huang, W.W. Wu, and T.Y. Tseng, Appl. Surf. Sci. 433, 1100 (2018).CrossRefGoogle Scholar
  49. 49.
    H. Wei, J. Zhu, S. Wu, S. Wei, and Z. Guo, Polymer 54, 1820 (2013).CrossRefGoogle Scholar
  50. 50.
    Y. Li, D. Chen, and R.A. Caruso, J. Mater. Chem. C 4, 10500 (2016).CrossRefGoogle Scholar
  51. 51.
    Rusi and S.R. Majid, PLoS ONE 11, 154566 (2016).CrossRefGoogle Scholar
  52. 52.
    X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, J. Power Sources 216, 290 (2012).CrossRefGoogle Scholar
  53. 53.
    C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhangd, and J. Zhangd, Chem. Soc. Rev. 44, 7484 (2015).CrossRefGoogle Scholar
  54. 54.
    R.D. Shannon, Acta Cryst. A32, 751 (1976).CrossRefGoogle Scholar
  55. 55.
    B. Tansel, J. Sager, T. Rector, J. Garland, F. Richard, S.L. Levine, M. Roberts, M. Hummerick, and J. Bauer, Sep. Purif. Technol. 51, 40 (2006).CrossRefGoogle Scholar
  56. 56.
    S. Chaudhari, D. Bhattacharjya, and J.S. Yu, RSC Adv. 3, 25120 (2013).CrossRefGoogle Scholar
  57. 57.
    R.S. Berry, S.A. Rice, and J. Ross, Physical Chemistry, 2nd ed. (New York: Wiley, 1980).Google Scholar
  58. 58.
    K.D. Collins, Biophys. J. 72, 65 (1997).CrossRefGoogle Scholar
  59. 59.
    C. Portet, P.L. Taberna, P. Simon, and C.L. Robert, Electrochim. Acta 49, 847 (2004).CrossRefGoogle Scholar
  60. 60.
    M.S. Halper and J.C. Ellenbogen, Supercapacitors: A Brief Overview, MITRE Nanosystems Group Report, McLean, VA (2006).Google Scholar
  61. 61.
    E.R. Nightingale Jr., J. Phys. Chem. 63(9), 1381 (1959).CrossRefGoogle Scholar
  62. 62.
    A.G. Volkov, S. Paula, and D.W. Deamer, Bioelectrochem. Bioenerg. 42, 153 (1997).CrossRefGoogle Scholar
  63. 63.
    J.M. Soon and K.P. Loh, Electrochem. Solid State Lett. 10, 250 (2007).CrossRefGoogle Scholar
  64. 64.
    W. Xiao, W. Zhou, T. Feng, Y. Zhang, H. Liu, and L. Tian, Materials 9, 783 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsI.I.T. RoorkeeRoorkeeIndia
  2. 2.Centre of NanotechnologyI.I.T. RoorkeeRoorkeeIndia

Personalised recommendations