Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 794–798 | Cite as

High-Pressure Synthesis of High Coercivity Bulk MnAl-C Magnets from Melt-Spun Ribbons

  • Pingzhan SiEmail author
  • Huidong Qian
  • Xinyou Wang
  • Yang Yang
  • Jihoon Park
  • Hongliang Ge
  • Chul-jin Choi
Article
  • 33 Downloads

Abstract

Bulk MnAl-C magnets were prepared via high-pressure compaction of melt-spun ribbons. The ε → τ phase transformation (PT) in the melt-spun MnAl and MnAlC ribbons occurs mainly via the massive mode, whereas the displacive mode is not prominent. The massive PT temperatures of the melt–spun MnAl and MnAlC ribbons were measured to be in the range 660–739 K and 700–758 K, respectively. The PT temperatures of the melt-spun MnAlC ribbons are lower than those of water–quenched MnAlC. The annealing process for producing τ-phase from ε-phase was optimized based on the measured PT temperature range. As a result, no decomposition of the metastable ε/τ-phase MnAl and MnAlC were observed during the optimized high temperature annealing. High-purity τ-phase MnAlC ribbons with high magnetization (122 Am2/kg at 8 T) and low coercivity (0.13 T) were obtained. The coercivity of the bulk MnAlC obtained by high-pressure compaction was significantly enhanced and reached 0.38 T partially due to the grain refinement of the sample during high-pressure deformation.

Keywords

MnAl MnAlC phase transformation high-pressure compaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We acknowledge the support from the Creative Materials Discovery Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2016M 3D1A1027835), and the National Natural Science Foundation of China (Nos. 11074227, 51671177).

References

  1. 1.
    L. Pareti, F. Bolzoni, F. Leccabue, and A.E. Ermakov, J. Appl. Phys. 59, 3824 (1986).CrossRefGoogle Scholar
  2. 2.
    T. Saito, J. Appl. Phys. 97, 10F304 (2005).CrossRefGoogle Scholar
  3. 3.
    O. Obi, L. Burns, Y. Chen, T. Fitchorov, S. Kim, K. Hsu, D. Heiman, L.H. Lewis, and V.G. Harris, J. Alloys Compd. 582, 598 (2014).CrossRefGoogle Scholar
  4. 4.
    A.E. Berkowitz, J.D. Livingston, and J.L. Walter, J. Appl. Phys. 55, 2106 (1984).CrossRefGoogle Scholar
  5. 5.
    Z.W. Liu, C. Chen, Z.G. Zheng, B.H. Tan, and R.V. Ramanujan, J. Mater. Sci. 47, 2333 (2012).CrossRefGoogle Scholar
  6. 6.
    I. Janotová, P. Švec Sr, P. Švec, I. Matko, D. Janickovic, J. Zigo, and M. Mihalkovic, J. Alloys Compd. 707, 137 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Geng, M.J. Lucis, P. Rasmussen, and J.E. Shield, J. Appl. Phys. 118, 033905 (2015).CrossRefGoogle Scholar
  8. 8.
    E. Fazakas, L.K. Varga, and F. Mazaleyrat, J. Alloys Compd. 434–435, 611 (2007).CrossRefGoogle Scholar
  9. 9.
    A. Pasko, F. Mazaleyrat, M. LoBue, E. Fazakas, and L.K. Varga, EPJ Web Conf. 40, 06008 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Jia, Y. Wu, S. Zhao, J. Wang, and C. Jiang, Intermetallics 96, 41 (2018).CrossRefGoogle Scholar
  11. 11.
    J.Z. Wei, Z.G. Song, Y.B. Yang, S.Q. Liu, H.L. Du, J.Z. Han, D. Zhou, C.S. Wang, Y.C. Yang, A. Franz, D. Többens, and J.B. Yang, AIP Adv. 4, 127113 (2014).CrossRefGoogle Scholar
  12. 12.
    W. Lu, J. Niu, T. Wang, K. Xia, Z. Xiang, Y. Song, H. Zhang, S. Yoshimura, and H. Saito, J. Alloys Compd. 675, 163 (2016).CrossRefGoogle Scholar
  13. 13.
    R. Madugundo, O. Koylu-Alkan, and G.C. Hadjipanayis, AIP Adv. 6, 056009 (2016).CrossRefGoogle Scholar
  14. 14.
    T. Ohtani, N. Kato, S. Kojima, K. Kojima, Y. Sakamoto, I. Konno, M. Tsukahara, and T. Kubo, IEEE Trans. Mag. 13, 1328 (1977).CrossRefGoogle Scholar
  15. 15.
    J. Thielsch, F. Bittner, and T.G. Woodcock, J. Magn. Magn. Mater. 426, 25 (2017).CrossRefGoogle Scholar
  16. 16.
    A. Chaturvedi, R. Yaqub, and I. Baker, Metals 4, 20 (2014).CrossRefGoogle Scholar
  17. 17.
    P. Saravanan, V.T.P. Vinod, M. Cernik, A. Selvapriya, D. Chakravarty, and S.V. Kamat, J. Magn. Magn. Mater. 374, 427 (2015).CrossRefGoogle Scholar
  18. 18.
    P.Z. Si, H.D. Qian, C.J. Choi, J. Park, S. Han, H.L. Ge, and K.P. Shinde, Materials 10, 1016 (2017).CrossRefGoogle Scholar
  19. 19.
    J.J. van den Broek, H. Donkersloot, G. van Tendeloo, and J. van Landuyt, Acta Metall. 27, 1497 (1979).CrossRefGoogle Scholar
  20. 20.
    P.Z. Si, H.D. Qian, C.J. Choi, J. Park, and H.L. Ge, J. Magn. Magn. Mater. 451, 540 (2018)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Powder and Ceramic DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.College of Materials Science and EngineeringChina Jiliang UniversityHangzhouChina

Personalised recommendations