Journal of Electronic Materials

, Volume 48, Issue 2, pp 1116–1121 | Cite as

Effect of Separate Zinc, Copper and Graphene Oxides Nanofillers on Electrical Properties of PVA Based Composite Strips

  • Muhammad AslamEmail author
  • Mazhar Ali Kalyar
  • Zulfiqar Ali RazaEmail author


Light weight, flexible and easily processable polymeric nanocomposites possessing either high or low dielectric permittivity is in demand for high density capacitors and in microelectronics, respectively. The present study was designed to investigate the effect of separate zinc oxide (ZnO), copper oxide (CuO), graphene oxide (GO) and reduced graphene oxide (RGO) nanofillers on the electrical properties of poly(vinyl alcohol) (PVA) based composite strips. Herein, a simple solution casting technique has been adopted to fabricate composite strips at different nanofillers loadings. The electrical properties of composite strips were evaluated using a frequency response analyzer. There was observed a rise in dielectric constant (\( \varepsilon^{\prime } \)), dielectric loss (\( \varepsilon^{\prime \prime } \)) and AC conductivity (σac) of separate ZnO and GO nanofillers loaded PVA strips; whereas a decrease in the said parameters was observed on loading with separate CuO and RGO nanofillers in the PVA based composite strips. The frequency response analysis showed a prominent effect of applied frequency and nanofiller contents on the electrical properties of composite strips. There was observed a significant decrease in \( \varepsilon^{\prime } \) and \( \varepsilon^{\prime \prime } \) on just 0.004 wt.% RGO loading in the PVA based composite strips. Such efficient nanocomposites might be suitable for their use in microelectronics and microwave applications at above the 1 MHz range.


Conductivity dielectric constant frequency response analyzer PVA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, and H.C. Zur Loye, Materials 2, 1697 (2009).CrossRefGoogle Scholar
  2. 2.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, and G.H. Hu, Prog. Mater. Sci. 57, 660 (2012).CrossRefGoogle Scholar
  3. 3.
    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010).CrossRefGoogle Scholar
  4. 4.
    C.W. Nan, Y. Shen, and J. Ma, Annu. Rev. Mater. Res. 40, 131 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Aslam, M.A. Kalyar, and Z.A. Raza, Polym. Eng. Sci. (2018). Scholar
  6. 6.
    M. Aslam, M.A. Kalyar, and Z.A. Raza, J. Mater. Sci.: Mater. Electron. 28, 13401 (2017).Google Scholar
  7. 7.
    M. Aslam, M.A. Kalyar, and Z.A. Raza, Polym. Bull. (2018). Scholar
  8. 8.
    M. Aslam, M.A. Kalyar, and Z.A. Raza, Appl. Phys. A 123, 424 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Aslam, M.A. Kalyar, and Z.A. Raza, J. Electron. Mater. 47, 3912 (2018).CrossRefGoogle Scholar
  10. 10.
    J.K. Rao, A. Raizada, D. Ganguly, M.M. Mankad, S.V. Satayanarayana, and G.M. Madhu, J. Mater. Sci. 50, 7064 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Aslam, M.A. Kalyar, and Z.A. Raza, Mater. Res. Express 3, 105036 (2016).CrossRefGoogle Scholar
  12. 12.
    S.B. Aziz and Z.H. Abidin, Phys. Chem. Mater. 144, 280 (2014).CrossRefGoogle Scholar
  13. 13.
    A.S. Ayesh, Chin. J. Polym. Sci. 28, 537 (2010).CrossRefGoogle Scholar
  14. 14.
    C. Gavade, N.L. Singh, D. Singh, S. Shah, A. Tripathi, and D.K. Avasthi, Integr. Ferroelectr. 117, 76 (2010).CrossRefGoogle Scholar
  15. 15.
    S.H. Xie, B.K. Zhu, X.Z. Wei, Z.K. Xu, and Y.Y. Xu, Compos. Part A Appl. Sci. Manuf. 36, 1152 (2005).CrossRefGoogle Scholar
  16. 16.
    R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, and G.N. Kumaraswamy, Appl. Phys. A 87, 797 (2007).CrossRefGoogle Scholar
  17. 17.
    G.C. Psarras, E. Manolakaki, and G.M. Tsangaris, Compos. Part A Appl. Sci. Manuf. 34, 1187 (2003).CrossRefGoogle Scholar
  18. 18.
    Y. Cao, P.C. Irwin, and K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004).CrossRefGoogle Scholar
  19. 19.
    T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005).CrossRefGoogle Scholar
  20. 20.
    N. Ahad, E. Saion, and E. Gharibshahi, J Nanomater. 2012, 94 (2012).CrossRefGoogle Scholar
  21. 21.
    S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, P.K. Pujari, T. Sheela, and J. Naik, in AIP Conference Proceedings (2014), pp. 1769–1771.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SargodhaSargodhaPakistan
  2. 2.Department of Applied SciencesNational Textile UniversityFaisalabadPakistan

Personalised recommendations