Journal of Electronic Materials

, Volume 48, Issue 2, pp 845–852 | Cite as

Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics

  • N. N. Wathore
  • Bhupender RawalEmail author
  • Prashant Dixit
  • Snehal Mandave
  • B. Praveenkumar
  • K. M. Rajan


Annealing of the electrodes before poling is an inevitable step in the processing of piezoceramics and, hence, the optimization of annealing temperature is necessary to obtain higher properties. However, for sodium potassium niobate based lead free piezoceramics, the data available is very puzzling, and the annealing temperature has not been standardized. In this study, the optimum ceramic-electrode interface has been designed by modulating the electrode annealing temperature to attain the best possible properties. The annealing temperature, ranging from 150°C to 750°C, has been investigated using piezoelectric properties, resistivity, dielectric properties, adhesion strength and interface of electrode-ceramic boundaries as parameters. The measured properties demonstrated significant dependence on the characteristics of the ceramic-electrode interface. For lead free piezoceramic, optimum properties are achieved at the annealing temperature of 450°C which has been attributed to the well- bonded homogeneous ceramic-electrode interface.


Lead free interface annealing electrode piezoelectric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors would like to thank Dr. R. K. Pandey, High Energy Materials Research Laboratory (HEMRL), Pune for extending the TG/DTA facility.


  1. 1.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
  2. 2.
    N.N. Wathore, C.M. Lonkar, and S. Premkumar, Trans. Powder. Metall. Assoc. India 43, 68 (2017).Google Scholar
  3. 3.
    B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (New York: Academic Press, 1971).Google Scholar
  4. 4.
    W. Wersing, M. Schnöller, and H. Wahl, Ferroelectrics 68, 145 (1986).CrossRefGoogle Scholar
  5. 5.
    A.C. Caballero, E. Nieto, P. Duran, C. Moure, M. Kosec, Z. Samardzija, and G. Drazic, J. Mater. Sci. 32, 3257 (1997).CrossRefGoogle Scholar
  6. 6.
    S.F. Wang, J.P. Dougherty, W. Huebner, and J.G. Pepin, J. Am. Ceram. Soc. 77, 3051 (1994).CrossRefGoogle Scholar
  7. 7.
    M. Allahverdi, S. Danforth, M. Jafari, and A. Safari, J. Eur. Ceram. Soc. 21, 1485 (2001).CrossRefGoogle Scholar
  8. 8.
    J. Kato, Y. Yokotani, H. Kagata, and H. Niwa, Jpn. J. Appl. Phys. 26, 90 (1987).CrossRefGoogle Scholar
  9. 9.
    L. Chen, X. Wang, B. Qiao, X. Deng, Z. Gui, and L. Li, J. Am. Ceram. Soc. 89, 3734 (2006).CrossRefGoogle Scholar
  10. 10.
    I. Burn, U. S. Patent 3987347 (1976)Google Scholar
  11. 11.
    Q. Li, M.H. Zhang, Z.X. Zhu, K. Wang, J.S. Zhou, F.Z. Yao, and J.F. Li, J. Mater. Chem. C. 5, 549 (2017). Scholar
  12. 12.
    A. Kumar, V.V. Bhanuprasad, K.C.J. Raju, and A.R. James, Eur. Phys. J. B 287, 1 (2015).Google Scholar
  13. 13.
    E.R. Neagu, Indian J. Pure Appl. Phys. 46, 809 (2008).Google Scholar
  14. 14.
    A. Lian and W. Zhong, I.E.E.E. Trans. Electr. Insul. 25, 638 (1990).CrossRefGoogle Scholar
  15. 15.
    H.C. Ling, J. Am. Ceram. Soc. 72, 770 (1989).CrossRefGoogle Scholar
  16. 16.
    H. Kim and H.H. Park, J. Ceram. Soc. Jpn. 118, 1071 (2010).CrossRefGoogle Scholar
  17. 17.
    P.K. Panda, J. Mater. Sci. 44, 5049 (2009).CrossRefGoogle Scholar
  18. 18.
    J. Yoo, D. Oh, Y. Jeong, J. Hong, and M. Jung, Mater. Lett. 58, 3831 (2004).CrossRefGoogle Scholar
  19. 19.
    Y. Saito and H. Takao, Ferroelectrics 338, 17 (2006).CrossRefGoogle Scholar
  20. 20.
    P. Kumari, R. Rai, S. Sharma, M. Shandilya, and A. Tiwari, J. Mater. Lett. 6, 453 (2015).CrossRefGoogle Scholar
  21. 21.
    W. Ge, Y. Ren, J. Zhang, C.P. Devreugd, J. Li, and D. Viehland, J. Appl. Phys. 111, 103503 (2012).CrossRefGoogle Scholar
  22. 22.
    R.C. Chang, S.Y. Chu, Y.P. Wong, Y.F. Lin, and C.S. Hong, Sens. Actuators, A 136, 267 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, and N. Setter, J. Am. Ceram. Soc. 90, 3485 (2007).CrossRefGoogle Scholar
  24. 24.
    Y. Gong, G. Yang, X. Li, L. Gong, L. Li, J. Peng, and X. Zheng, J. Mater. Sci.: Mater. Electron. 23, 1910 (2012).Google Scholar
  25. 25.
    L. Wu, J.L. Zhang, C.L. Wang, and J.C. Li, J. Appl. Phys. 103, 084116 (2008).CrossRefGoogle Scholar
  26. 26.
    I. Smeltere, M. Antonova, A. Kalvane, O. Grigs, and M. Livinsh, Mater. Sci. 17, 62 (2011).Google Scholar
  27. 27.
    X. Cheng, J. Wu, X. Wang, B. Zhang, X. Lou, X. Wang, D. Xiao, and J. Zhu, A.C.S. Appl. Mater. Interfaces 5, 10409 (2013).CrossRefGoogle Scholar
  28. 28.
    B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, and X. Lou, A.C.S. Appl. Mater. Interfaces 5, 7718 (2013).CrossRefGoogle Scholar
  29. 29.
    F.R. Marcos, P. Ochoa, and J.F. Fernandez, J. Eur. Ceram. Soc. 27, 4125 (2007).CrossRefGoogle Scholar
  30. 30.
    B. Zhang, J. Wu, X. Wang, X. Cheng, J. Zhu, and D. Xiao, Curr. Appl. Phys. 13, 1647 (2013).CrossRefGoogle Scholar
  31. 31.
    S. Zhang, R. Xia, T.R. Shrout, G. Zang, and J. Wang, J. Appl. Phys. 100, 104108 (2006).CrossRefGoogle Scholar
  32. 32.
    E.A. Gurdal, S.O. Ural, H.Y. Park, S. Nahm, and K. Uchino, Sens. Actuators, A 200, 44 (2013).CrossRefGoogle Scholar
  33. 33.
    S.L. Yang, C.S. Hong, C.C. Tsai, Y.C. Liou, and S.Y. Chu, J. Eur. Ceram. Soc. 32, 1643 (2012).CrossRefGoogle Scholar
  34. 34.
    Z. Yang, Y. Chang, B. Liu, and L. Wei, Mater. Sci. Eng., A 432, 292 (2006).CrossRefGoogle Scholar
  35. 35.
    Y. Guo, K. Kakimoto, and H. Ohsato, Mater. Lett. 59, 241 (2005).CrossRefGoogle Scholar
  36. 36.
    Z.Y. Shen, Y. Xu, and J.F. Li, Ceram. Int. 38S, 331 (2012).CrossRefGoogle Scholar
  37. 37.
    J.J. Zhou, J.F. Li, and X.W. Zhang, J. Mater. Sci. 47, 1767 (2012).CrossRefGoogle Scholar
  38. 38.
    T.A. Skidmore, T.P. Comyn, and S.J. Milne, J. Mater. Sci. 47, 1767 (2012).CrossRefGoogle Scholar
  39. 39.
    M.S. Kim, D.S. Lee, E.C. Park, S.J. Jeong, and J.S. Song, J. Eur. Ceram. Soc. 27, 4121 (2007).CrossRefGoogle Scholar
  40. 40.
    M.V. Slinkina, G.I. Dontsov, and V.M. Zhukovsky, J. Mater. Sci. 28, 5189 (1993).CrossRefGoogle Scholar
  41. 41.
    Y.A. Genenko, J. Glaum, M.J. Hoffman, and K. Albe, J. Mater. Sci. Engg. B 192, 52 (2015).CrossRefGoogle Scholar
  42. 42.
    E.B. Barabanova, O.V. Malyshkna, and S.I. Pugachev, Ferroelectrics 497, 74 (2016).CrossRefGoogle Scholar
  43. 43.
    A. Dahiya and O.P. Thakur, Int. J. Eng. Innov. Technol. 3, 176 (2014).Google Scholar
  44. 44.
    D. Agustinawati, N.L. Isnaini, and S. Suasmoro, AIP Conf. Proc. 1788, 030129 (2017).CrossRefGoogle Scholar
  45. 45.
    Y. Zhang, D.C. Lupascu, N. Balke, and J. Rodel, J. Phys. IV 128, 97 (2005).Google Scholar
  46. 46.
    M. Dawber, K.M. Rabe, and J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Armament Research and Development Establishment PuneIndia

Personalised recommendations