Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 696–704 | Cite as

Effect of Mesoporous TiO2 Thicknesses on the Performance of Solid-State Dye-Sensitized Solar Cells

  • Said Karim ShahEmail author
  • Muhammad Ishaq
  • Shaukat Ali Khattak
  • Irfan Ullah
  • Khizar Hayat
  • Majid Khan
  • Gulzar Khan
  • Lubna Tabbasam
Article

Abstract

We report the fabrication of solid-state dye-sensitized solar cells (ss-DSSCs), using a metal-free organic dye (D102) as a sensitizer. Mesoporous TiO2 acting as a photoanode, is prepared from TiO2 nanopaste followed by drafting light-absorbing dye molecules. Spiro-OMeTAD is used as a hole transport material (HTM), which has a potential role in the energy conversion process of solid-state dye-sensitized solar cells (ss-DSSCs). Here, TiO2 mesoporous films are used with three different thicknesses (∼ 1.5 μm, ∼ 1.7 μm and ∼ 2.0 μm) for the device fabrication. Various characterizations of optimum TiO2 porous film (with the thickness of ∼ 2.0 μm) are performed such as ultraviolet–visible (UV–Vis) transmission, x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and cross-section scanning electron microscopy (SEM). Transmittance analysis reveals that transparency of the TiO2 films ranges from 70% to 80%. The x-ray diffraction (XRD) pattern of TiO2 shows anatase as its major crystalline phase. The porous structure formation of the TiO2 film is confirmed by scanning electron microscopy (SEM) cross section analysis. Photovoltaic performance of the devices was examined in air. Higher power-conversion efficiency (PCE) of 3.5% is obtained with optimum device thickness (∼ 2.3 μm). The device stability test is performed under continuous illumination for 2 h, showing slightly good air and light stability.

Keywords

Solid-state dye-sensitized solar cells (ss-DSSCs) photoanode (TiO2organic dyes (D102) hole transport materials (HTMs) power conversion efficiency (PCE) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work has been partially supported by Higher Education Commission (HEC), Pakistan, under the Startup Research Grant Program No. 21-1148/SRGP/R&D/HEC/2016.

References

  1. 1.
    M. Grätzel, Nature 414, 338 (2001).CrossRefGoogle Scholar
  2. 2.
    A.N.M. Green, E. Palomares, S.A. Haque, J.M. Kroon, and R.J. Durrant, J. Phys. Chem. B 109, 12525 (2005).CrossRefGoogle Scholar
  3. 3.
    A.F. Nogueira, C. Longo, and M.A. De Paoli, Coord. Chem. Rev. 248, 1455 (2004).CrossRefGoogle Scholar
  4. 4.
    X. You, G. Zou, Q. Ye, Q. Zhang, and P. He, J. Mater. Chem. 18, 4704 (2008).CrossRefGoogle Scholar
  5. 5.
    J. Xia, N. Masaki, M. Lira-Cantu, Y. Kim, K. Jiang, and S. Yanagida, J. Am. Chem. Soc. 130, 1258 (2008).CrossRefGoogle Scholar
  6. 6.
    K.J. Jiang, K. Manseki, Y.H. Yu, N. Masaki, K. Suzuki, Y.I. Song, and S. Yanagida, Adv. Func. Mater. 19, 2481 (2009).CrossRefGoogle Scholar
  7. 7.
    S.X. Tan, J. Zhai, M.X. Wan, L. Jiang, and D.B. Zhu, Synth. Met. 137, 1511 (2003).CrossRefGoogle Scholar
  8. 8.
    U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, Nature 395, 583 (1998).CrossRefGoogle Scholar
  9. 9.
    A. Dubey, N. Adhikari, S. Venkatesan, S. Gu, D. Khatiwada, Q. Wang, L. Mohammad, M. Kumar, and Q. Qiao, Solar Energy Mater. Solar cells 145, 193–199 (2016).CrossRefGoogle Scholar
  10. 10.
    E.A. Gaml, A. Dubey, K.M. Reza, M.N. Hasan, N. Adhikari, H. Elbohy, B. Bahrami, H. Zeyada, S. Yang, and Q. Qiao, Solar Energy Mater. Solar Cells 168, 8 (2017).CrossRefGoogle Scholar
  11. 11.
    A. Dubey, N. Adhikari, S. Mabrouk, F. Wu, K. Chen, S. Yang, and Q. Qiao, J. Mater. Chem. A 6, 2406 (2018).CrossRefGoogle Scholar
  12. 12.
    S. Mabrouk, B. Bahrami, A. Gurung, K.M. Reza, N. Adhikari, A. Dubey, R. Pathak, S. Yang, and Q. Qiao, Sustain. Energy Fuels 1, 2162 (2017).CrossRefGoogle Scholar
  13. 13.
    N. Adhikari, A. Dubey, E.A. Gaml, B. Vaagensmith, K.M. Reza, S.A.A. Mabrouk, S. Gu, J. Zai, X. Qian, and Q. Qiao, Nanoscale 8, 2693 (2016).CrossRefGoogle Scholar
  14. 14.
    S. Mabrouk, A. Dubey, W. Zhang, N. Adhikari, B. Bahrami, M.N. Hasan, S. Yang, and Q. Qiao, J. Phys. Chem. C 120, 24577 (2016).CrossRefGoogle Scholar
  15. 15.
    B.T. Tuân, S.K. Shah, M. Abbas, X. Sallenave, G. Sini, L. Hirsch, and F. Goubard, RSC Adv. 5, 49590 (2015).CrossRefGoogle Scholar
  16. 16.
    B.T. Tuân, S.K. Shah, M. Abbas, X. Sallenave, G. Sini, L. Hirsch, and F. Goubard, ChemNanoMat. 1, 203 (2015).CrossRefGoogle Scholar
  17. 17.
    H. Zheng, S.K. Shah, M. Abbas, L. Isabelle, T. Rivera, R.M. Almeida, L. Hirsch, T. Toupance, and S. Ravaine, Phot. Nano. Fund. Appl. 21, 13 (2016).CrossRefGoogle Scholar
  18. 18.
    W.H. Howie, F. Claeyssens, H. Miura, and L.M. Peter, J. Am. Chem. Soc. 130, 1367 (2008).CrossRefGoogle Scholar
  19. 19.
    H.J. Snaith, A. Petrozza, S. Ito, H. Miura, and M. Gratzel, Adv. Funct. Mater. 19, 1810 (2009).CrossRefGoogle Scholar
  20. 20.
    J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.L. Cevey-Ha, C. Yi, M.K. Nazeeruddin, and M. Gratzel, J. Am. Chem. Soc. 133, 18042 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Melas-Kyriazi, I.K. Ding, A. Marchioro, A. Punzi, B.E. Hardin, G.F. Burkhard, N. Tétreault, M. Grätzel, J.E. Moser, and M.D. Mcgehee, Adv. Energy Mater. 1, 407 (2011).CrossRefGoogle Scholar
  23. 23.
    I.K. Ding, N. Tétreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Grätzel, and M.D. Mcgehee, Adv. Funct. Mater. 19, 2431 (2009).CrossRefGoogle Scholar
  24. 24.
    A.C. Arango, S.A. Carter, and P.J. Brock, Appl. Phys. Lett. 74, 1698 (1999).CrossRefGoogle Scholar
  25. 25.
    A.C. Arango, L.R. Johnson, V.N. Bliznyuk, Z. Schlesinger, S.A. Carter, and H.H. Hörhold, Adv. Mater. 12, 1689 (2000).CrossRefGoogle Scholar
  26. 26.
    J.S. Salafsky, Phys. Rev. B 59, 10885 (1999).CrossRefGoogle Scholar
  27. 27.
    A.J. Breeze, Z. Schlesinger, and S.A. Carter, Phys. Rev. B64, 125205 (2001).CrossRefGoogle Scholar
  28. 28.
    D. Gebeyehu, C.J. Brabec, F. Padinger, T. Fromherz, S. Spiekermann, N. Vlachopoulosn, F. Kienberger, H. Schindler, and N.S. Sariciftci, Synth. Met. 121, 1549 (2001).CrossRefGoogle Scholar
  29. 29.
    M. Kaneko, K. Takayama, S.S. Pandey, W. Takashima, T. Endo, M. Rikukawa, and K. Kaneto, Synth. Met. 12, 11537 (2001).Google Scholar
  30. 30.
    M. Zukalova, A. Zukal, L. Kavan, M.K. Nazeeruddin, P. Liska, and M. Grätzel, Nano Lett. 5, 1789 (2005).CrossRefGoogle Scholar
  31. 31.
    K. Hou, B. Tian, F. Li, Z. Bian, D. Zhao, and C. Huang, J. Mater. Chem. 15, 2414 (2005).CrossRefGoogle Scholar
  32. 32.
    L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, Adv. Mater. 17, 813 (2005).CrossRefGoogle Scholar
  33. 33.
    J.H. Yum, D.P. Hagberg, S.J. Moon, K.M. Karlsson, T. Marinado, L. Sun, A. Hagfeldt, M.K. Nazeeruddin, and M. Grätzel, Angew. Chem. Int. Ed. 48, 1576 (2009).CrossRefGoogle Scholar
  34. 34.
    P. Chen, J.H. Yum, F.D. Angelis, E. Mosconi, S. Fantacci, S.J. Moon, R. Humphry-Baker, J. Ko, M.K. Nazeeruddin, and M. Grätzel, Nano Lett. 9, 2487 (2009).CrossRefGoogle Scholar
  35. 35.
    T. Horiuchi, H. Miura, and S. Uchida, Chem. Commun. 24, 3036 (2003).CrossRefGoogle Scholar
  36. 36.
    A.A. Daniyan, L.E. Umoru, and B. Olunlade, J. Miner. Mater. Charact. Eng. 1, 138 (2013).Google Scholar
  37. 37.
    S.U.M. Khan, M. Al-Shahry, and W.B. Ingler Jr., Science 297, 2243 (2002).CrossRefGoogle Scholar
  38. 38.
    C. He, X.Z. Li, N. Graham, and Y. Wang, Appl. Catal. A Gen. 305, 54 (2006).CrossRefGoogle Scholar
  39. 39.
    K. Shankar, K.C. Tep, G.K. Mor, and C.A. Grimes, J. Phys. D Appl. Phys. 39, 2361 (2006).CrossRefGoogle Scholar
  40. 40.
    W. Shangguan, A. Yoshida, and M. Chen, Solar Energy Mater. Solar Cells 80, 433 (2003).CrossRefGoogle Scholar
  41. 41.
    S.-Z. Chen, P.-Y. Zhang, D.-M. Zhuang, and W.-P. Zhu, Catal. Commun. 5, 677 (2004).CrossRefGoogle Scholar
  42. 42.
    A.B. Murphy, Sol. Energy Mater. Sol. Cells 91, 1326 (2007).CrossRefGoogle Scholar
  43. 43.
    X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li, and D. Wu, Appl. Phys. A 97, 341 (2009).CrossRefGoogle Scholar
  44. 44.
    A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb, and X. Portier, Int. J. Hydrog. Energy 36, 4130 (2011).CrossRefGoogle Scholar
  45. 45.
    D. Chen, F. Huang, Y.B. Cheng, and R.A. Caruso, Adv. Mater. 21, 2206 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsAbdul Wali Khan UniversityMardanPakistan
  2. 2.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)WuhanChina
  3. 3.Department of PhysicsCOMSATS UniversityIslamabadPakistan

Personalised recommendations