Journal of Electronic Materials

, Volume 48, Issue 2, pp 1286–1293 | Cite as

Preparation of Oxidation-Resistant Ag-Cu Alloy Nanoparticles by Polyol Method for Electronic Packaging

  • Jianfeng YanEmail author
  • Dongyue Zhang
  • Guisheng Zou
  • Lei Liu
  • Y. Norman Zhou


Ag or Cu metal nanoparticle paste can be used as a bonding material for electronic packaging applications. However, Ag nanoparticle paste has some drawbacks including high cost and being prone to ion migration in high-humidity conditions. The main obstacle to using Cu nanoparticle paste is rapid oxidation in air during heating. In this work, we describe a method to prepare Ag-Cu alloy nanoparticle paste by a polyol chemical reduction method combined with subsequent concentration. Characterization with ultraviolet–visible spectroscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and energy dispersive spectrometry confirm the formation of the Ag-Cu alloy structure. During the synthesis of Ag-Cu alloy nanoparticles, an Ag core forms initially, followed by codeposition of Ag and Cu. Most of the Ag-Cu alloy nanoparticles have a truncated octahedral shape with twin structures located at the edges. This Ag-Cu alloy nanoparticle paste has a good oxidation resistance up to 350°C in air atmosphere. Using the Ag-Cu alloy nanoparticle paste, joints were formed at a low sinter-bonding temperature of 160°C. Shearing tests confirm the formation of robust joints, with an average shear strength of 50 MPa.


Ag-Cu alloy nanoparticles bonding low temperature electronic packaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Li, K. Moon, and C.P. Wong, Science 308, 1419 (2005).CrossRefGoogle Scholar
  2. 2.
    Y. Shu, T. Ando, Q. Yin, G. Zhou, and G. Zhiyong, Nanoscale 9, 12398 (2017).CrossRefGoogle Scholar
  3. 3.
    Y.N. Zhou, Microjoining and Nanojoining (Cambridge: Woodhead Publishing, 2008).CrossRefGoogle Scholar
  4. 4.
    Q. Jiang, S.H. Zhang, and J.C. Li, Solid State Commun. 130, 581 (2004).CrossRefGoogle Scholar
  5. 5.
    P. Buffat and J.P. Borel, Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
  6. 6.
    J. Yan, D. Zhang, G. Zou, L. Liu, H. Bai, A. Wu, and Y. Norman Zhou, J. Nanomater. 2016, 32 (2016).CrossRefGoogle Scholar
  7. 7.
    P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, and Y. Norman Zhou, ACS Appl. Mater. Interfaces. 7, 12597 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, and M. Saito, Mater. Lett. 161, 231 (2015).CrossRefGoogle Scholar
  9. 9.
    J.G. Bai and G.-Q. Lu, IEEE Trans. Device Mater. Reliab. 6, 436 (2006).CrossRefGoogle Scholar
  10. 10.
    T.G. Lei, J.N. Calata, G.-Q. Lu, X. Chen, and S. Luo, IEEE Trans. Compon. Packag. Technol. 33, 98 (2010).CrossRefGoogle Scholar
  11. 11.
    Y.H. Mei, Y. Cao, G. Chen, X. Li, G.Q. Lu, and X. Chen, IEEE Trans. Device Mater. Reliab. 14, 262 (2014).CrossRefGoogle Scholar
  12. 12.
    S.A. Paknejad and S.H. Mannan, Microelectron. Reliab. 70, 1 (2017).CrossRefGoogle Scholar
  13. 13.
    A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010).CrossRefGoogle Scholar
  14. 14.
    E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
  15. 15.
    H. Zhang, C. Chen, J. Jiu, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electron. 29, 8854 (2018).CrossRefGoogle Scholar
  16. 16.
    J. Yan, G. Zou, A. Hu, and Y. Norman Zhou, J. Mater. Chem. 21, 15981 (2011).CrossRefGoogle Scholar
  17. 17.
    X. Liu and H. Nishikawa, Scr. Mater. 120, 80 (2016).CrossRefGoogle Scholar
  18. 18.
    C.-H. Hsiao, W.-T. Kung, J.-M. Song, J.-Y. Chang, and T.-C. Chang, Mater. Sci. Eng. A 684, 500 (2017).CrossRefGoogle Scholar
  19. 19.
    C.H. Lee, E.B. Choi, and J.-H. Lee, Scr. Mater. 150, 7 (2018).CrossRefGoogle Scholar
  20. 20.
    H. Jiang, K. Moon, and C.P. Wong, in Proceedings of International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces (2005), p. 173.Google Scholar
  21. 21.
    D. Zhang, G. Zou, L. Liu, Y. Zhang, Y. Chen, H. Bai, and Y. Norman Zhou, Mater. Trans. 56, 1252 (2015).CrossRefGoogle Scholar
  22. 22.
    J. Yan, G. Zou, W. Ai-ping, J. Ren, J. Yan, A. Hu, and Y. Zhou, Scr. Mater. 66, 582 (2012).CrossRefGoogle Scholar
  23. 23.
    V. Moreno, J. Creuze, F. Berthier, C. Mottet, G. Tréglia, and B. Legrand, Surf. Sci. 600, 5011 (2006).CrossRefGoogle Scholar
  24. 24.
    C.F. Vardeman and J. Daniel Gezelter, The Journal of Physical Chemistry C 112, 3283 (2008).CrossRefGoogle Scholar
  25. 25.
    M. Abdulla-Al-Mamun, Y. Kusumoto, and M. Muruganandham, Mater. Lett. 63, 2007 (2009).CrossRefGoogle Scholar
  26. 26.
    M. Kerker, J. Colloid Interface Sci. 105, 297 (1985).CrossRefGoogle Scholar
  27. 27.
    M. Hirai and A. Kumar, J. Appl. Phys. 100, 014309 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Jianfeng Yan
    • 1
    • 2
    Email author
  • Dongyue Zhang
    • 1
  • Guisheng Zou
    • 1
  • Lei Liu
    • 1
  • Y. Norman Zhou
    • 1
    • 3
  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations