Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 827–837 | Cite as

A Very Strong Blue Fluorescent Probe for Hexavalent Chromium Detection with Highly Selective and Sensitive Performance

  • Yanfang Tan
  • Yuwei LanEmail author
  • Jinling Liu
  • Chunfeng Liang
Article
  • 21 Downloads

Abstract

A wide variety of methods including chromatography, chemiluminescence and spectrophotometry have been reported to detect hexavalent chromium. Recently, carbon quantum dots (CQDs) have gained increasing attention as effective probes for inorganic ions, organic molecules, and biomolecules. However, there are still some bottlenecks, such as raw materials being too expensive to obtain, the materials have a low quantum yield (QY), and the preparation process is not environmentally friendly. Here, we prepare a very strong fluorescent probe through a simple, rapid, and green one-pot hydrothermal method with blue emission (QY, 61.1%). The obtained CQDs exhibit good water solubility, low toxicity, and photostability. Moreover, the CQDs show good selectivity and sensitivity to hexavalent chromium (Cr(VI)) under neutral conditions, with a linear range of 1–100 μM and a detection limit of 0.19 μM. Meanwhile, this fluorescent probe has been successfully applied for the highly selective analysis of Cr(VI) in natural water samples, which demonstrated its potential in environmental field applications.

Keywords

Carbon quantum dots fluorescence sensor hexavalent chromium environmental protection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This research work was financially supported by the National Natural Science Foundation of China (NSFC, No. 61664002).

Conflict of interest

There are no conflicts to declare.

Supplementary material

11664_2018_6770_MOESM1_ESM.docx (775 kb)
Supplementary material 1 (DOCX 774 kb)

References

  1. 1.
    X. Liu, T. Li, Q. Wu, X. Yan, C. Wu, X. Chen, and G. Zhang, Talanta 165, 216 (2017).Google Scholar
  2. 2.
    Q. Liang, Y. Wang, F. Lin, M. Jiang, P. Li, and B. Huang, Anal. Methods (2017).  https://doi.org/10.1039/c7ay01069a.Google Scholar
  3. 3.
    M. Zheng, Z. Xie, D. Qu, D. Li, P. Du, X. Jing, and Z. Sun, ACS Appl. Mater. Interfaces 5, 13242 (2013).Google Scholar
  4. 4.
    J. Zhang, X. Chen, Y. Li, S. Han, Y. Du, and H. Liu, Anal. Methods (2018).  https://doi.org/10.1039/c7ay02806g.Google Scholar
  5. 5.
    Y. Li, Z. Liu, Y. Wu, J. Chen, J. Zhao, F. Jin, and P. Na, Appl. Catal. B Environ. 224, 508 (2018).Google Scholar
  6. 6.
    D.-D. Liu, H. Su, Q. Cao, X.-Y. Le, and Z.-W. Mao, RSC Adv. 5, 40588 (2015).Google Scholar
  7. 7.
    Y. Guo, D. Wang, X. Liu, X. Wang, W. Liu, and W. Qin, New J. Chem. 38, 5861 (2014).Google Scholar
  8. 8.
    J. Shen, S. Shang, X. Chen, D. Wang, and Y. Cai, Sens. Actuators B Chem. 248, 92 (2017).Google Scholar
  9. 9.
    K. Hola, Y. Zhang, Y. Wang, E.P. Giannelis, R. Zboril, and A.L. Rogach, Nano Today 9, 590 (2014).Google Scholar
  10. 10.
    Y. Liu, J. Hu, Y. Li, H.P. Wei, X.S. Li, X.H. Zhang, S.M. Chen, and X.Q. Chen, Talanta 134, 16 (2015).Google Scholar
  11. 11.
    X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, and W.A. Scrivens, J. Am. Chem. Soc. 126, 12736 (2004).  https://doi.org/10.1021/ja040082h.Google Scholar
  12. 12.
    S. Hu, Y. Guo, and R. Tian, in ICEOE 2011 - 2011 International Conference on Electronics and Optoelectronics, Proceedings (2011), pp. V2-283–V2-285.  https://doi.org/10.1109/iceoe.2011.6013235.
  13. 13.
    M. Liu, Y. Xu, F. Niu, J.J. Gooding, and J. Liu, Analyst 141, 2657 (2016).  https://doi.org/10.1039/C5AN02231B.Google Scholar
  14. 14.
    S. Sharma, A. Umar, S.K. Mehta, and S.K. Kansal, Ceram. Int. 43, 7011 (2017).Google Scholar
  15. 15.
    C. Li, W. Liu, Y. Ren, X. Sun, W. Pan, and J. Wang, Sens. Actuators B Chem. 240, 941 (2017).Google Scholar
  16. 16.
    W. Wang, Y. Li, L. Cheng, Z. Cao, and W. Liu, J. Mater. Chem. B2, 46 (2013).Google Scholar
  17. 17.
    F. Wang, S. Wang, Z. Sun, and H. Zhu, Fuller. Sci. Technol. 23, 769 (2015).Google Scholar
  18. 18.
    J. Zong, Y. Zhu, X. Yang, J. Shen, and C. Li, Chem. Commun. 47, 764 (2010).Google Scholar
  19. 19.
    Y. Fang, S. Guo, D. Li, C. Zhu, W. Ren, S. Dong, and E. Wang, ACS Nano 6, 400 (2012).Google Scholar
  20. 20.
    X.H. Gao, Y.Z. Lu, R.Z. Zhang, S.J. He, J. Ju, M.M. Liu, L. Li, and W. Chen, J. Mater. Chem. C3, 2302 (2015).Google Scholar
  21. 21.
    T. Tian, Y. He, Y.L. Ge, and G.W. Song, Sens. Actuators B Chem. 240, 1265 (2017).Google Scholar
  22. 22.
    Y. Chen, Y. Dong, H. Wu, C. Chen, Y. Chi, and G. Chen, Electrochim. Acta 151, 552 (2015).Google Scholar
  23. 23.
    S.M. Rosolina, S.A. Bragg, R. Ouyang, J.Q. Chambers, and Z.L. Xue, J. Electroanal. Chem. (Lausanne) 781, 120 (2016).Google Scholar
  24. 24.
    J. Wang, F. Qiu, X. Li, H. Wu, J. Xu, X. Niu, J. Pan, T. Zhang, and D. Yang, J. Lumin. 188, 230 (2017).Google Scholar
  25. 25.
    T. Fang, X. Yang, L. Zhang, and J. Gong, J. Hazard. Mater. 312, 106 (2016).Google Scholar
  26. 26.
    F.T. Johra and W.-G. Jung, Appl. Surf. Sci. 362, 169 (2016).Google Scholar
  27. 27.
    M.M.L. Guerrero, E.V. Alonso, J.M.C. Pavon, M.T.S. Cordero, and A.G. de Torres, J. Anal. At. Spectrom. 27, 682 (2012).Google Scholar
  28. 28.
    X. Gong, Y. Liu, Z. Yang, S. Shuang, Z. Zhang, and C. Dong, Anal. Chim. Acta 968, 85 (2017).Google Scholar
  29. 29.
    Z.Q. Song, F.Y. Quan, Y.H. Xu, M.L. Liu, L. Cui, and J.Q. Liu, Carbon 104, 169 (2016).Google Scholar
  30. 30.
    S. Bhatt, M. Bhatt, A. Kumar, G. Vyas, T. Gajaria, and P. Paul, Colloids Surf. B167, 126 (2018).Google Scholar
  31. 31.
    Y. Zhang, X. Fang, H. Zhao, and Z. Li, Talanta 181, 318 (2018).Google Scholar
  32. 32.
    R. Vaz, J. Bettini, J.G.F. Júnior, E.D.S. Lima, W.G. Botero, J.C.C. Santos, and M.A. Schiavon, J. Photochem. Photobiol. A346, 502 (2017).Google Scholar
  33. 33.
    Y. Liu, X. Gong, Y. Gao, S. Song, X. Wu, S. Shuang, and C. Dong, RSC Adv. 6, 28477 (2016).Google Scholar
  34. 34.
    M.R. Pacquiao, M.D.G. de Luna, N. Thongsai, S. Kladsomboon, and P. Paoprasert, Appl. Surf. Sci. 453, 192 (2018).Google Scholar
  35. 35.
    M.M.F. Chang, I.R. Ginjom, M. Ngu-Schwemlein, and S.M. Ng, Microchim. Acta 183, 1899 (2016).Google Scholar
  36. 36.
    M. Vedamalai, A.P. Periasamy, C. Wang, Y. Tseng, L. Ho, C. Shih, and H. Chang, Nanoscale 6, 13119 (2014).Google Scholar
  37. 37.
    B. De and N. Karak, RSC Adv. 3, 8286 (2013).Google Scholar
  38. 38.
    P. Li, Y. Hong, H. Feng, and S.F.Y. Li, J. Mater. Chem. B 5, 2979 (2017).Google Scholar
  39. 39.
    J. Choi, N. Kim, J.-W. Oh, and F.S. Kim, J. Ind. Eng. Chem. 65, 104 (2018).Google Scholar
  40. 40.
    H. Lim, Y. Liu, H.Y. Kim, and D.I. Son, Thin Solid Films 660, 672 (2018).Google Scholar
  41. 41.
    S. Mohapatra, M.K. Bera, and R.K. Das, Sens. Actuators B Chem. 263, 459 (2018).Google Scholar
  42. 42.
    Y. Quan, Q. Liu, S. Zhang, and S. Zhang, Appl. Surf. Sci. 445, 335 (2018).Google Scholar
  43. 43.
    D.R. da Silva Souza, L.D. Caminhas, J.P. de Mesquita, and F.V. Pereira, Mater. Chem. Phys. Mater. 203, 148 (2018).Google Scholar
  44. 44.
    M.P. Aji, A.L. Wati, A. Priyanto, J. Karunawan, B.W. Nuryadin, E. Wibowo, P. Marwoto, and Sulhadi, Environ. Nanotechnol. Monit. Manag. 9, 136 (2018).Google Scholar
  45. 45.
    Y. Wang, X. Chang, N. Jing, and Y. Zhang, Anal. Methods 10, 2775 (2018).  https://doi.org/10.1039/c8ay00441b.Google Scholar
  46. 46.
    M. Bayati, J. Dai, A. Zambrana, C. Rees, and M. Fidalgo de Cortalezzi, J. Environ. Sci. China 65, 223 (2018).Google Scholar
  47. 47.
    T. Tian, Y. He, Y. Ge, and G. Song, Sens. Actuators B Chem. 240, 1265 (2017).Google Scholar
  48. 48.
    L. Fang, L. Zhang, Z. Chen, C. Zhu, J. Liu, and J. Zheng, Mater. Lett. 191, 1 (2017).Google Scholar
  49. 49.
    C. Li, W. Liu, X. Sun, W. Pan, G. Yu, and J. Wang, Sens. Actuators B Chem. 263, 1 (2018).Google Scholar
  50. 50.
    B.P. Qi, X. Zhang, B.B. Shang, D. Xiang, and S. Zhang, J. Nanopart. Res. 20, 20 (2018).  https://doi.org/10.1007/s11051-018-4123-8.Google Scholar
  51. 51.
    D. Bhattacharya, M.K. Mishra, and G. De, J. Phys. Chem. C 121, 28106 (2017).Google Scholar
  52. 52.
    N. Li, S.G. Liu, Y.Z. Fan, Y.J. Ju, N. Xiao, H.Q. Luo, and N.B. Li, Anal. Chim. Acta 1013, 63 (2018).Google Scholar
  53. 53.
    M. Kasha, J. Chem. Phys. 20, 71 (1952).  https://doi.org/10.1063/1.1700199.Google Scholar
  54. 54.
    Y. Shlmlzu and T. Azuml, J. Phys. Chem. 86, 22 (1982).Google Scholar
  55. 55.
    M.C. Tamargo and D.O. Cowan, J. Am. Chem. Soc. 104, 1107 (1982).Google Scholar
  56. 56.
    S. Bhatt, M. Bhatt, A. Kumar, G. Vyas, T. Gajaria, and P. Paul, Colloids Surf. B Biointerfaces 167, 126 (2018).Google Scholar
  57. 57.
    M.R. Pacquiao, M.D.G. de Luna, N. Thongsai, S. Kladsomboon, and P. Paoprasert, Appl. Surf. Sci. 453, 192 (2018).Google Scholar
  58. 58.
    T. Tian, Y. He, Y.L. Ge, and G.W. Song, Sens. Actuators B Chem. 240, 1265 (2017).Google Scholar
  59. 59.
    J. Shen, S. Shang, X. Chen, D. Wang, and Y. Cai, Sens. Actuators B Chem. 248, 92 (2017).Google Scholar
  60. 60.
    H.Y. Zhang, Y. Wang, S. Xiao, H. Wang, J.H. Wang, and L. Feng, Biosens. Bioelectron. 87, 46 (2017).Google Scholar
  61. 61.
    Y. Ma, Y. Chen, J. Liu, Y. Han, S. Ma, and X. Chen, Talanta 185, 249 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina

Personalised recommendations