Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 817–826 | Cite as

Effect of Zinc Addition on the Microstructure, Thermal and Mechanical Properties of Indium-Tin-xZinc Alloys

  • Jingze WangEmail author
  • Dongxin Mao
  • Lei Shi
  • Wei Zhang
  • Xiaohua Zhang
Article
  • 22 Downloads

Abstract

The effect of different Zn content on the microstructure, thermal and mechanical properties of In-Sn-xZn alloys was investigated. The microstructure of the alloys was analyzed by optical microscopy, x-ray diffraction, transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The results indicated that the alloys consisted of β, γ and Zn phases. The γ phase was generated from the decomposed supersaturation β phase in the peritectic structure, with less than 2.0 wt.% Zn content, characterized by a 120°C phase transition temperature. And a close mutual lattice relation was maintained between β and γ phases. The alloys, with Zn content from 3.0 wt.% to 6.0 wt.% and a melting point at 108°C, had an eutectic structure. Studies indicated that the morphology and distribution of the Zn phases were significantly affected by the β phase. The primary Zn tended to grow along the vertical crystal orientations and to form a cube-shaped block in the β phase. Other Zn existed in the form of a precipitate particle phase in the β phase. Most of Zn was excluded from the γ phase region, which had an effect on the phase boundary of β/γ. And the phase relationship between γ and β in In-Sn-4Zn is [01\( \bar{1} \)]γ//[\( \bar{1} \)21]β,(111)γ//(210)β. The performance of the material was significantly enhanced by Zn. When Zn content was 6.0 wt.%, microhardness and elongation of the material were increased by about 160% and 100% respectively, compared with those of In-49Sn-1Zn. Under coupling of the melting interval and the hard phase, the wetting performance of the alloy decreased as the Zn content increased. And the increase of Zn content in the solder made the diffusion distance of Cu longer, which promoted the growth of intermetallic compound (IMC).

Keywords

In-Sn-Zn microstructure thermal properties mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

In this work, the authors would like to thank Professor Pan and Professor Liu at the Center for Material Analysis and Testing, who provided the experimental help. Financial support was provided by the Natural Science Foundation of Heilongjiang Province of the Research E201447 and Science and Technology Research Project of Education Department of Heilongjiang Province of the Research 11521047.

References

  1. 1.
    S.W. Chen, C.F. Yang, H.J. Wu, R.B. Chang, and C.M. Hsu, Mater. Chem. Phys. 132, 481 (2012).CrossRefGoogle Scholar
  2. 2.
    X. Chen, F. Xue, J. Zhou, and Y. Yao, J. Alloys Compd. 633, 377 (2015).CrossRefGoogle Scholar
  3. 3.
    D.G. Kim and S.B. Jung, J. Alloys Compd. 386, 151 (2005).CrossRefGoogle Scholar
  4. 4.
    J.W. Kim and S.B. Jung, Mater. Sci. Eng. A-Struct. 397, 145 (2005).CrossRefGoogle Scholar
  5. 5.
    J.W. Kim and S.B. Jung, J. Nanosci. Nanotechnol. 12, 3259 (2012).CrossRefGoogle Scholar
  6. 6.
    J.M. Koo and S.B. Jung, J. Electron. Mater. 34, 1565 (2005).CrossRefGoogle Scholar
  7. 7.
    J.M. Koo and S.B. Jung, Microsyst. Technol. 13, 1567 (2007).CrossRefGoogle Scholar
  8. 8.
    J.M. Koo, J.W. Yoon, and S.B. Jung, Surf. Interface Anal. 38, 426 (2006).CrossRefGoogle Scholar
  9. 9.
    J.M. Koo, J.W. Yoon, and S.B. Jung, J. Mater. Res. 23, 1631 (2008).CrossRefGoogle Scholar
  10. 10.
    K.O. Lee, J.W. Morris, and F. Hua, J. Electron. Mater. 41, 336 (2012).CrossRefGoogle Scholar
  11. 11.
    K.O. Lee, J.W. Morris, and F. Hua, J. Electron. Mater. 42, 168 (2013).CrossRefGoogle Scholar
  12. 12.
    S.Y. Li, D.H. Yang, Q. Tan, and L.L. Li, J. Electron. Mater. 44, 2007 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Li, A.B.Y. Lim, K.M. Luo, Z. Chen, F.S. Wu, and Y.C. Chan, J. Alloys Compd. 673, 372 (2016).CrossRefGoogle Scholar
  14. 14.
    Y. Li, F.S. Wu, and Y.C. Chan, J. Mater. Sci. Mater. Electron. 26, 8522 (2015).CrossRefGoogle Scholar
  15. 15.
    S.K. Lin, R.B. Chang, S.W. Chen, M.Y. Tsai, and C.M. Hsu, J. Mater. Sci. 49, 3805 (2014).CrossRefGoogle Scholar
  16. 16.
    S.K. Lin, R.B. Chang, S.W. Chen, M.Y. Tsai, and C.M. Hsu, Mater. Chem. Phys. 154, 60 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Pstrus, Appl. Surf. Sci. 265, 50 (2013).CrossRefGoogle Scholar
  18. 18.
    M. Rechchach, A. Sabbar, H. Flandorfer, and H. Ipser, Thermochim. Acta 502, 66 (2010).CrossRefGoogle Scholar
  19. 19.
    D.P. Tao, J. Alloys Compd. 457, 124 (2008).CrossRefGoogle Scholar
  20. 20.
    H.M. Wu, F.C. Wu, and T.H. Chuang, J. Electron. Mater. 34, 1385 (2005).CrossRefGoogle Scholar
  21. 21.
    M. McCormack, S. Jin, H.S. Chen, and D.A. Machusak, J. Electron. Mater. 23, 687 (1994).CrossRefGoogle Scholar
  22. 22.
    M.D. Dickey, ACS Appl. Mater. Int. 6, 18369 (2014).CrossRefGoogle Scholar
  23. 23.
    R.C. Ma, C.R. Guo, Y.X. Zhou, and J. Liu, J. Electron. Mater. 43, 4255 (2014).CrossRefGoogle Scholar
  24. 24.
    X.H. Yang, S.C. Tan, B. Yuan, and J. Liu, Sci. China Technol. Sci. 59, 597 (2016).CrossRefGoogle Scholar
  25. 25.
    S.C. Chang, S.C. Lin, and K.C. Hsieh, J. Electron. Mater. 35, 399 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K.N. Tu, Scr. Mater. 51, 641 (2004).CrossRefGoogle Scholar
  27. 27.
    R.J. Hooper, D.P. Adams, D. Hirschfeld, and M.V. Manuel, J. Electron. Mater. 45, 1 (2016).CrossRefGoogle Scholar
  28. 28.
    S.M. Kuo and K.L. Lin, J. Electron. Mater. 36, 1378 (2007).CrossRefGoogle Scholar
  29. 29.
    S.M. Kuo and K.L. Lin, J. Electron. Mater. 37, 1611 (2008).CrossRefGoogle Scholar
  30. 30.
    C.S. Lee and F.S. Shieu, J. Electron. Mater. 35, 1660 (2006).CrossRefGoogle Scholar
  31. 31.
    Y. Cui, X.J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, and K. Ishida, J. Alloys Compd. 320, 234 (2001).CrossRefGoogle Scholar
  32. 32.
    I. Ohnuma, Y. Cui, X.J. Liu, and Y. Inohana, J. Electron. Mater. 29, 1113 (2000).CrossRefGoogle Scholar
  33. 33.
    H.F. Wu, M.J. Chiang, and T.H. Chuang, J. Electron. Mater. 33, 940 (2004).CrossRefGoogle Scholar
  34. 34.
    H.M. Lee, S.W. Yoon, and B.-J. Lee, J. Electron. Mater. 27, 1161 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Jingze Wang
    • 1
    Email author
  • Dongxin Mao
    • 1
  • Lei Shi
    • 1
  • Wei Zhang
    • 1
  • Xiaohua Zhang
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina

Personalised recommendations