Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 806–816 | Cite as

Investigation of Cationic Distribution, Magnetic and Dielectric Properties of Cr-Substituted Mg Ferrites

  • Safia AnjumEmail author
  • Maryam Pervaiz
  • Afshan Rashid
  • Rehana Zia
Article
  • 40 Downloads

Abstract

A series of soft ferrites with the general formula MgCrxFe2−xO4, where x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, have been fabricated using the powder metallurgy route. The comprehensive study of Cr-doped magnesium ferrite has been carried out employing different techniques. The structural, surface, elemental, magnetic and dielectric properties have been examined using x-ray diffractometry, Fourier infrared spectroscopy, scanning electron microscopy, a vibrating sample magnetometer and an inductor capacitor resistor meter, respectively. The formation of a single-phase cubic spinel structure is confirmed by x-ray diffractometry and Fourier transform infrared spectroscopy. It is revealed that the lattice constant decreases with increasing Cr content. The surface of these samples consists of nano-particles in the range of 90–175 nm, while energy dispersive x-ray spectroscopy has been subject to elemental analysis of all the samples. The saturation magnetization and remanence has a nonlinear trend with increasing Cr content, while the coercivity decreases monotonically. The dielectric properties also confirm the formation of spinel ferrites.

Keywords

Mg ferrites spinel ferrites magnetic properties dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Momoi, A. Nakano, and T. Nomura, in Proceedings of the Sixth International Conference on Ferrites, Kyoto, Japan, 1202 (1992)Google Scholar
  2. 2.
    T.T. Ahmed, I.Z. Rahman, and M.A. Rahman, J. Mater. Process. Technol. 153, 797 (2004).CrossRefGoogle Scholar
  3. 3.
    H. Ji, Z. Lan, Z. Yu, and Z. Xu, IEEE Trans. Magn. 46, 974 (2001).Google Scholar
  4. 4.
    S.M. Antao, I. Hassan, and J.B. Parise, Am. Miner. 90, 219 (2005).CrossRefGoogle Scholar
  5. 5.
    S.E. Shirsath, B.G. Toksha, and K.M. Jadhav, Mater. Chem. Phys. 117, 163 (2009).CrossRefGoogle Scholar
  6. 6.
    S. Mitra, K. Mandal, and E.S. Choi, IEEE Trans. Magn. 44, 2974 (2008).CrossRefGoogle Scholar
  7. 7.
    R.M. Rosnan, Z. Othaman, R. Hussin, A.A. Ati, A. Samavati, S. Dabagh, and S. Zare, Chin. Phys. B 25, 047501 (2016).CrossRefGoogle Scholar
  8. 8.
    D.J. Shellmyer and S. Nafis, J. Appl. Phys. 57, 3584 (1985).CrossRefGoogle Scholar
  9. 9.
    E.M. Chudnovsky, J. Appl. Phys. 64, 5770 (1988).CrossRefGoogle Scholar
  10. 10.
    C. Xiong, Q. Chen, W. Lu, H. Gao, and Z. Gao, Catal. Lett. 69, 231 (2000).CrossRefGoogle Scholar
  11. 11.
    K.B. Modi, U.N. Trivedi, P.V. Sharma, V.K. Lakhani, M.C. Chhantbar, and H.H. Joshi, Ind. J. Pure Appl. Phys. 44, 165 (2006).Google Scholar
  12. 12.
    P.V. Reddy, R. Satyanarayana, and T.S. Rao, J. Mater. Sci. Lett. 3, 847 (1984).CrossRefGoogle Scholar
  13. 13.
    C. Sun and K. Sun, Phys. B 391, 335 (2007).CrossRefGoogle Scholar
  14. 14.
    M. Lal, D.K. Sharma, and M. Singh, Ind. J. Pure Appl. Phys. 43, 291 (2005).Google Scholar
  15. 15.
    S.J. Shukla, K.M. Jadhav, and G.K. Bichile, J. Magn. Magn. Mater. 195, 692 (1999).CrossRefGoogle Scholar
  16. 16.
    S. Mirzaee, S. Farjami Shayesteh, and S. Mahdavifar, Polymer J. 55, 3713 (2014).CrossRefGoogle Scholar
  17. 17.
    A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).CrossRefGoogle Scholar
  18. 18.
    L. Vegard, Z. Phys. 5, 17 (1921).CrossRefGoogle Scholar
  19. 19.
    A.A. Pandit, A.R. Shitre, D.R. Shengule, and K.M. Jadhav, J. Mater. Sci. 40, 423 (2005).CrossRefGoogle Scholar
  20. 20.
    A.B. Salunkhe, V.M. Khot, M.R. Phadatare, N.D. Thorat, R.S. Joshi, H.M. Yadav, and S.H. Pawar, J. Magn. Magn. Mater. 352, 91 (2014).CrossRefGoogle Scholar
  21. 21.
    I.H. Gul, Synthesis and Characterization of structural, magnetic and electrical Properties of Co-based spinel ferrites, Doctor of Philosophy (2007)Google Scholar
  22. 22.
    S. Singhal and K. Chandra, J. Solid State Chem. 180, 296 (2007).CrossRefGoogle Scholar
  23. 23.
    V.B. Kawade, G.K. Bichile, and K.M. Jadhav, Mater. Lett. 42, 33 (2000).CrossRefGoogle Scholar
  24. 24.
    A.G. Bhosale and B.K. Chaugule, Mater. Chem. Phys. 97, 273 (2006).CrossRefGoogle Scholar
  25. 25.
    D.A. Evans, C.S. Burgey, N.A. Paras, T. Vojkovsky, S.W. Tregay, and J. Am, Chem. Soc. 120, 5824 (1998).CrossRefGoogle Scholar
  26. 26.
    M.J. Iqbal, R.A. Khan, S. Mizukami, and T. Miyazaki, J. Magn. Magn. Mater. 323, 2137 (2011).CrossRefGoogle Scholar
  27. 27.
    S. Zahi, M. Hashim, and A.R. Daud, Mater. Lett. 60(23), 2803 (2006)Google Scholar
  28. 28.
    S. Singhal and K. Chanda, J. Solid State Chem. 180, 296 (2007).CrossRefGoogle Scholar
  29. 29.
    A. Kosak, D. Makovec, and A. Znidasec, J. Eur. Ceram. Soc. 24, 959 (2004).CrossRefGoogle Scholar
  30. 30.
    J.C. Maxwell, Electricity and Magnetism, Vol. 1 (Oxford: Oxford University Press, 1929).Google Scholar
  31. 31.
    C.G. Koops, Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar
  32. 32.
    M.R. Bhandare, H.V. Jamadar, A.T. Pathan, B.K. Chougule, and A.M. Shaikh, J. Alloys Compd. 509, L113 (2011).CrossRefGoogle Scholar
  33. 33.
    A.N. Patil, M.G. Patil, K.K. Patankar, V.L. Mathe, R.P. Mahajan, and S.A. Patil, J. Bull. Mater. Sci. 23, 447 (2000).CrossRefGoogle Scholar
  34. 34.
    P.N. Vasambekar, C.B. Kolekar, and A.S. Vaingankar, J. Magn. Magn. Mater. 186, 333 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Safia Anjum
    • 1
    Email author
  • Maryam Pervaiz
    • 1
  • Afshan Rashid
    • 1
  • Rehana Zia
    • 1
  1. 1.Department of PhysicsLahore College for Women UniversityLahorePakistan

Personalised recommendations