Journal of Electronic Materials

, Volume 48, Issue 1, pp 649–655 | Cite as

Optimization of Thermoelectric Properties of Mechanically Alloyed p-Type SiGe by Mathematical Modelling

  • Sajid AhmadEmail author
  • Ajay Singh
  • Ranita Basu
  • Satish Vitta
  • K. P. Muthe
  • S. C. Gadkari
  • S. K. Gupta


Silicon germanium (SiGe) is a conventional high temperature thermoelectric material, which is usually synthesized through a mechanical alloying route using a ball mill, followed by sintering using a vacuum hot press for fabrication of dense bulk samples. The milling time and sintering temperature are two important parameters that have a major influence on the thermoelectric properties of synthesized samples. In the present work, a simulation technique (i.e., response surface analysis) was employed to study the effect of milling time and sintering temperature on the thermoelectric properties of p-type SiGe. The statistical optimisation of thermoelectric properties was performed using the central composite rotatable design. The responses like electrical resistivity, thermal conductivity, Seebeck coefficient, power factor and the figure-of-merit (ZT) of p-type SiGe alloys were evaluated. The experimental data was fitted to a second order polynomial model and the fitted model was evaluated by regression analysis and analysis of variance (ANOVA). A surprising finding of the analysis is that all responses are optimized at similar values of hot press temperature and ball milling times. There was a model predicted optimum value of ZT = 1.148 at sintering temperature of 1504.5 K and ball milling time of 53.6 h.


Thermoelectrics mathematical modelling mechanical alloying silicon germanium figure of merit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors (Satish Vitta and Ajay Singh) would like to acknowledge the BRNS (37(3)/14/03/2017-BRNS/ 37037) for the financial support.

Supplementary material

11664_2018_6766_MOESM1_ESM.pdf (882 kb)
Supplementary material 1 (PDF 883 kb)


  1. 1.
    E.A. Skrabek and D.S. Trimmer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995), Google Scholar
  2. 2.
    T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
  3. 3.
    T.M. Tritt, eds., Semiconductors and Semimetals, Vol. 69–71 (San Diego: Academic, 2001).Google Scholar
  4. 4.
    C.M. Bhandari and D.M. Rowe, Contemp. Phys. 21, 219 (1980).CrossRefGoogle Scholar
  5. 5.
    R.G. Lange and W.P. Carroll, Energy Convers. Manag. 49, 393 (2008).CrossRefGoogle Scholar
  6. 6.
    D.M. Rowe, Appl. Energy 40, 241 (1991).CrossRefGoogle Scholar
  7. 7.
    A. Lahwal, X. Zeng, S. Bhattacharya, M. Zhou, D. Hitchcock, M. Karakaya, J. He, A.M. Rao, and T.M. Tritt, Energies 8, 10958 (2015).CrossRefGoogle Scholar
  8. 8.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).CrossRefGoogle Scholar
  9. 9.
    G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).CrossRefGoogle Scholar
  10. 10.
    R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D.K. Aswal, and S.K. Gupta, J. Mater. Chem. A 2, 6922 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Ahmad, A. Singh, A. Bohra, R. Basu, S. Bhattacharya, R. Bhatt, K.N. Meshram, M. Roy, S.K. Sarkar, Y. Hayakawa, A.K. Debnath, D.K. Aswal, and S.K. Gupta, Nano Energy 27, 282 (2016).CrossRefGoogle Scholar
  12. 12.
    J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, and D.S. Beers, J. Appl. Phys. 35, 2899 (1964).CrossRefGoogle Scholar
  13. 13.
    M. Zehbarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y.C. Lan, X. Wang, M.S. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).CrossRefGoogle Scholar
  14. 14.
    B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077 (2012).CrossRefGoogle Scholar
  15. 15.
    J.A. Perez-Taborda, M.M. Rojo, J. Maiz, N. Neophytou, and M.M. Gonzalez, Sci. Rep. 6, 32778 (2016).CrossRefGoogle Scholar
  16. 16.
    Z. Zamanipour, X. Shi, A.M. Dehkordi, J.S. Krasinski, and D. Vashaee, Phys. Status Solidi A 209, 2049 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Schilz and V.N. Romanenko, J. Mater. Sci.: Mater. Electron. 6, 265 (1995).Google Scholar
  18. 18.
    R.M. Davis and C.C. Koch, Metallurgia 21, 305 (1987).Google Scholar
  19. 19.
    J. Schilz, M. Riffel, K. Pixiusa, and H.J. Meyer, Powder Technol. 105, 149 (1999).CrossRefGoogle Scholar
  20. 20.
    L. Lu, M.O. Lai, and S. Zhang, J. Mater. Process. Technol. 67, 100 (1997).CrossRefGoogle Scholar
  21. 21.
    M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, and M. Mohamad, Renew. Sustain. Energy Rev. 30, 337 (2014).CrossRefGoogle Scholar
  22. 22.
    Z. Rizlan and O. Mamat, Chin. J. Eng., 802459 (2014).Google Scholar
  23. 23.
    M. Abdellahia and M. Bahmanpour, Mater. Res. 17, 781 (2014).CrossRefGoogle Scholar
  24. 24.
    A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, and V.K. Gupta, RSC Adv. 5, 18438 (2015).CrossRefGoogle Scholar
  25. 25.
    S. Lakshmanan and M. Kumar, Int. J. Eng. Sci. Innov. Technol. 2, 64 (2013).Google Scholar
  26. 26.
    N.S.M. El-Tayeb, T.C. Yap, V.C. Venkatesh, and P.V. Brevern, Mater. Des. 30, 4023 (2009).CrossRefGoogle Scholar
  27. 27.
    K. Dass and S.R. Chauhan, Mater. Manuf. Processes 27, 531 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Mia, M.A. Khan, and N.R. Dhar, Int. J. Adv. Manuf. Technol. 93, 975 (2017).CrossRefGoogle Scholar
  29. 29.
    S. Bathula, J. Mula, B.G. Bhasker, N.K. Singh, K. Tyagi, A.K. Srivastava, and A. Dhar, Nanoscale 7, 12474 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Nuclear Research Laboratory, Astrophysical Sciences DivisionBhabha Atomic Research CenterSrinagarIndia
  2. 2.Technical Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia
  4. 4.Department of Metallurgical Engineering and Materials ScienceIIT MumbaiMumbaiIndia

Personalised recommendations