Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1330–1334 | Cite as

High-Speed Electroplating of Fe Films Using DES-Based Plating Baths

  • Takeshi YanaiEmail author
  • Tomoki Yamaguchi
  • Masaki Nakano
  • Hirotoshi Fukunaga
5th International Conference of Asian Union of Magnetics Societies
  • 15 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

We fabricated Fe films from deep eutectic solvent (DES)-based plating baths using constant direct current and investigated the effect of the current density and the bath concentration on the plating rate, magnetic properties and surface roughness of the Fe films. The plating rate increased with increasing the current density, and the maximum plating rate depended on the FeCl2 concentration in the plating bath. The FeCl2 concentration affected the surface roughness, and we confirmed that a high FeCl2 concentration was effective in obtaining Fe films with smooth surfaces. Without deteriorations of the surface roughness or the soft magnetic properties, we consequently obtained a high plating rate value of approximately 930 μm/h by the increases in the current density and the FeCl2 concentration. We, therefore, concluded that the DES is a promising solvents for high-speed plating of Fe films.

Keywords

Electroplating magnetic films deep eutectic solvents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Akedo, Mater. Sci. Forum 449–452, 43 (2004).CrossRefGoogle Scholar
  2. 2.
    S. Sugimoto, T. Maeda, R. Kobayashi, J. Akedo, M. Lebedev, and K. Inomata, IEEE Trans. Magn. 39, 2986 (2003).CrossRefGoogle Scholar
  3. 3.
    Y. Kamo and T. Miyamoto, IEEE Trans. Magn. Jpn. 1, 502 (1985).CrossRefGoogle Scholar
  4. 4.
    J.M. Quemper, S. Nicolas, J.P. Gilles, J.P. Grandchamp, A. Bosseboeuf, T. Bourouina, and E. Dufour-Gergam, Sens. Act. A: Phys. 74, 1 (1999).CrossRefGoogle Scholar
  5. 5.
    E.R. Spada, L.S. de Oliveira, A.S. da Rocha, A.A. Pasa, G. Zangari, and M.L. Sartorelli, J. Magn. Magn. Mater. 272, e891 (2004).CrossRefGoogle Scholar
  6. 6.
    D. Flynn and M.P.Y. Desmulliez, IEEE Trans. Magn. 46, 979 (2010).CrossRefGoogle Scholar
  7. 7.
    T. Shimokawa, T. Yanai, K. Takahashi, M. Nakano, K. Suzuki, and H. Fukunaga, IEEE Trans. Magn. 48, 2907 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Theis, S. Ediger, M.T. Schmitt, J.-E. Hoffmann, and M. Saumer, Phys. Status Solidi A 210, 853 (2013).CrossRefGoogle Scholar
  9. 9.
    T. Osaka, T. Yokoshima, D. Shiga, K. Imai, and K. Takashima, Electrochem. Solid-State Lett. 6, C53 (2003).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang and D.G. Ivey, Chem. Mater. 16, 1189 (2004).CrossRefGoogle Scholar
  11. 11.
    T. Chotibhawaris, T. Luangvaranunt, P. Jantaratana, and Y. Boonyongmaneerat, Intermetallics 93, 323 (2018).CrossRefGoogle Scholar
  12. 12.
    A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, and V. Tambyrajah, Chem. Commun. 9, 70 (2003).CrossRefGoogle Scholar
  13. 13.
    A.P. Abbott, D. Bothby, G. Capper, D.L. Davies, and R. Rasheed, J. Am. Chem. Soc. 126, 9142 (2004).CrossRefGoogle Scholar
  14. 14.
    A.P. Abbott, G. Capper, D.L. Davies, K.J. McKenzie, and S.U. Obi, J. Chem. Eng. Data 51, 1280 (2006).CrossRefGoogle Scholar
  15. 15.
    T. Yanai, K. Shiraishi, T. Shimokawa, Y. Watanabe, T. Ohgai, M. Nakano, K. Suzuki, and H. Fukunaga, J. Appl. Phys. 115, 17A344 (2014).CrossRefGoogle Scholar
  16. 16.
    T. Yanai, K. Shiraishi, T. Akiyoshi, K. Azuma, Y. Watanabe, T. Ohgai, T. Morimura, M. Nakano, and H. Fukunaga, AIP Adv. 6, 055917 (2016).CrossRefGoogle Scholar
  17. 17.
    T. Yanai, T. Akiyoshi, T. Yamaguchi, K. Takashima, T. Morimura, M. Nakano, and H. Fukunaga, AIP Adv. 8, 056106 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Nagasaki UniversityNagasakiJapan

Personalised recommendations